81 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Single carrier frequency domain equalization and energy efficiency optimization for MIMO cognitive radio.

    Get PDF
    This dissertation studies two separate topics in wireless communication systems. One topic focuses on the Single Carrier Frequency Domain Equalization (SC-FDE), which is a promising technique to mitigate the multipath effect in the broadband wireless communication. Another topic targets on the energy efficiency optimization in a multiple input multiple output (MIMO) cognitive radio network. For SC-FDE, the conventional linear receivers suffer from the noise amplification in deep fading channel. To overcome this, a fractional spaced frequency domain (FSFD) receiver based on frequency domain oversampling (FDO) is proposed for SC-FDE to improve the performance of the linear receiver under deep fading channels. By properly designing the guard interval, a larger sized Discrete Fourier Transform (DFT) is equipped to oversample the received signal in frequency domain. Thus, the effect of frequency-selective fading can still be eliminated by a one-tap frequency domain filter. Two types of FSFD receivers are proposed based on the least square (LS) and minimum mean square error (MMSE) criterion. Both the semi-analytical analysis and simulation results are given to evaluate the performance of the proposed receivers. Another challenge in SC-FDE is the in-phase/quadrature phase (IQ) imbalance caused by unideal radio frequency (RF) front-end at the transmitter or the receiver. Most existing works in single carrier transmission employ linear compensation methods, such as LS and MMSE, to combat the interference caused by IQ imbalance. Actually, for single carrier transmissions, it is possible for the receivers to adopt advanced nonlinear compensation methods to improve the system performance under IQ imbalance. For such purpose, an iterative decision feedback receiver is proposed to compensate the IQ imbalance caused by unideal RF front-end in SC-FDE. Numerical results show that the proposed iterative IQ imbalance compensation can significantly improve the performance of SC-FDE system under IQ imbalance compared with the conventional linear method. For the energy efficiency optimization in the MIMO cognitive radio network, multiple secondary users (SUs) coexisting with a primary user (PU) adjust their antenna radiation patterns and power allocations to achieve energy-efficient transmission. The optimization problems are formulated to maximize the energy efficiency of a cognitive radio network in both distributed and centralized point of views. Also, constraints on the transmission power and the interference to PU are introduced to protect the PU’s transmission. In order to solve the non-convex optimization problems, convex relaxations are used to transform them into equivalent problems with better tractability. Then three optimization algorithms are proposed to find the energy-efficient transmission strategies. Simulation results show that the proposed energy-efficiency optimization algorithms outperform the existing algorithms

    Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance

    No full text
    In this paper, we investigate the achievable performance of channel coded single-carrier frequency division multiple-access (SC-FDMA) systems employing various detection schemes, when communicating over frequency-selective fading channels. Specifically, three types of minimum mean-square error (MMSE) based frequency-domain (FD) turbo equalisers are considered. The first one is the turbo FD linear equaliser (LE). The second one is a parallel interference cancellation (PIC)-assisted turbo FD decision-feedback equaliser (DFE). The final one is the proposed hybrid interference cancellation (HIC)-aided turboFD-DFE, which combines successive interference cancellation (SIC) with iterative PIC and decoding. The benefit of interference cancellation (IC) is analysed with the EXtrinsic Information Transfer (EXIT) charts. The performance of the coded SC-FDMA systems employing the above-mentioned detection schemes is investigated with the aid of simulations. Our studies show that the IC techniques achieve an attractive performance at a moderate complexity

    Design of distributed space-time block codes for relay networks

    Get PDF
    The fading effect often faced in wireless communications can cause severe attenuation in signal strength. To solve this problem, diversity techniques (in terms of spatial/time/frequency) have been considered. For example, spatial diversity can be achieved by using multiple antennas at the transmitter or the receiver or both. One important architecture that can efficiently exploit the multiple antennas is the space-time block coding (STBC). The realization of STBC requires more than one antenna at the transmitter. Unfortunately, the use of multiple antennas is not practical in many wireless devices due to the size limitation. Recently, the “cooperative diversity”, also known as “user diversity”, enables single-antenna mobiles in a multi-user environment to share their antennas and generate a virtual multiple-antenna transmitter that allows them to achieve transmit diversity. To apply concept of the STBC schemes to the cooperative communications, Laneman et al. suggest the use of “conventional” orthogonal STBC in a “distributed” fashion for practical implementation of user cooperation. The pioneering works on distributed STBC (DSTBC) assume flat fading channels. This can be achieved by using multi-carrier techniques such as orthogonal frequency division multiplex (OFDM) to divide a whole spectrum into a set of narrower bands. Hence, the channel can be considered flat in each sub-band. However, for current wireless communications with single-carrier transmission, the frequency selective channels cannot be avoided. Thus, in this dissertation, I will consider the application of DSTBC to frequency selective fading channels. In the first part of my thesis, I present a new design of DSTBC to achieve full rate transmission and channel decoupling property as in conventional STBC by using zero-padding (ZP). Several receiver techniques in frequency domain are studied for the signal detection of the proposed DSTBC. The extension from ZP to unique-word (UW) will be proposed in the second part. Exploiting the properties of the UW, I will present in the third part of my thesis a method of channel estimation for relay networks

    Multipacket reception in the presence of in-band full-duplex communication

    Get PDF
    In-Band Full-DupleX (IB-FDX) is defined as the ability for nodes to transmit and receive signals simultaneously on the same channel. Conventional digital wireless networks do not implement it, since a node’s own transmission signal causes interference to the signal it is trying to receive. However, recent studies attempt to overcome this obstacle, since it can potentially double the spectral efficiency of current wireless networks. Different mechanisms exist today that are able to reduce a significant part of the Self- Interference (SI), although specially tuned Medium Access Control (MAC) protocols are required to optimize its use. One of IB-FDX’s biggest problems is that the nodes’ interference range is extended, meaning the unusable space for other transmissions and receptions is broader. This dissertation proposes using MultiPacket Reception (MPR) to address this issue and adapts an already existing Single-Carrier with Frequency-Domain Equalization (SC-FDE) receiver to IB-FDX. The performance analysis suggests that MPR and IB-FDX have a strong synergy and are able to achieve higher data rates, when used together. Using analytical models, the optimal transmission patterns and transmission power were identified, which maximize the channel capacity with the minimal energy consumption. This was used to define a new MAC protocol, named Full-duplex Multipacket reception Medium Access Control (FM-MAC). FM-MAC was designed for a single-hop cellular infrastructure, where the Access Point (AP) and the terminals implement both IB-FDX and MPR. It divides the coverage range of the AP into a closer Full-DupleX (FDX) zone and a farther Half-DupleX (HDX) zone and adds a tunable fairness mechanism to avoid terminal starvation. Simulation results show that this protocol provides efficient support for both HDX and FDX terminals, maximizing its capacity when more FDX terminals are used

    Joint Range Estimation Using Single Carrier Burst Signals for Networked UAVs.

    Get PDF
    The localization accuracy demand is ever growing in UAV communication networks. We propose a joint coarse and fine range estimation method using single carrier burst signals with two samples per symbol for UAV networks. The coarse estimation of our joint estimation method exploits multiple preamble symbols for flexible single-carrier frequency-domain equalization (SC-FDE) frame structures to calculate correlation metrics, which are insensitive to frequency offset due to the differential correlation operation. Then, we propose a fine range estimation method using only two samples per symbol with expectation relying on shaping or matched filter. Furthermore, we derive the performance bounds for the ranging system using both raised cosine (RC) and better than raised-cosine (BTRC) pulses. Finally, extensive simulations are conducted to validate the proposed method in terms of estimate bias and variance for different modulations, shaping filters, and fading channels. Our simulation results show that, the root mean square errors of proposed ranging method can reach the order of centimeter at medium-to-high signal-to-noise ratio (SNR) region, whereas the case using BTRC filter is capable of enhancing the ranging performance at low SNRs

    Low complexity detection for SC-FDE massive MIMO systems

    Get PDF
    Nowadays we continue to observe a big and fast growth of wireless com-munication usage due to the increasing number of access points, and fields of application of this technology. Furthermore, these new usages can require higher speed and better quality of service in order to create market. As example we can have: live 4K video transmission, M2M (Machine to Machine communication), IoT (Internet of Things), Tactile Internet, between many others. As a consequence of all these factors, the spectrum is getting overloaded with communications, increasing the interference and affecting the system's per-formance. Therefore a different path of ideas has been followed and the commu-nication process has been taken to the next level in 5G by the usage of big arrays of antennas and multi-stream communication (MIMO systems) which in a greater scale are called massive MIMO schemes. These systems can be combined with an SC-FDE (Single-Carrier Frequency Domain Equalization) scheme to im-prove the power efficiency due to the low envelope fluctuations. This thesis focused on the equalization in massive MIMO systems, more specifically in the FDE (Frequency Domain Equalization), studying the perfor-mance of different approaches, namely ZF (Zero Forcing), EGD (Equal Gain De-tector), MRD (Maximum Ratio Detector), IB-DFE (Iterative Block Decision Feed-back Equalizer) and a proposed receiver combining MRD (or EGD) and IB-DFE.With this approach we want to minimize the ICI (Inter Carrier Interference) in order to have almost independent data streams and to produce a low complexity code, so that the receiver's performance doesn't affect the total system's perfor-mance, with a final objective of increasing the data throughput in a great scale

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    corecore