361 research outputs found

    Big Data Research in Information Systems: Toward an Inclusive Research Agenda

    Get PDF
    Big data has received considerable attention from the information systems (IS) discipline over the past few years, with several recent commentaries, editorials, and special issue introductions on the topic appearing in leading IS outlets. These papers present varying perspectives on promising big data research topics and highlight some of the challenges that big data poses. In this editorial, we synthesize and contribute further to this discourse. We offer a first step toward an inclusive big data research agenda for IS by focusing on the interplay between big data’s characteristics, the information value chain encompassing people-process-technology, and the three dominant IS research traditions (behavioral, design, and economics of IS). We view big data as a disruption to the value chain that has widespread impacts, which include but are not limited to changing the way academics conduct scholarly work. Importantly, we critically discuss the opportunities and challenges for behavioral, design science, and economics of IS research and the emerging implications for theory and methodology arising due to big data’s disruptive effects

    Fuzzy support vector machine for classification of time series data: A simulation study

    Get PDF
    Support vector machine (SVM) has become one of most developed methods for classification, focusing on cross-sectional analysis. However, classification of time series data is an important issue in statistics and data mining. Classification of time series data using SVMs that focus on cross-sectional data leads to improper classification, and hence, the SVM needs to be extended for handling time series dataset. As with cross-section data, the problem of imbalanced data is also common in time series data. Fuzzy method has been proven to be capable of overcoming the case of imbalanced data. In this paper, we developed a Fuzzy Support Vector Machine (FSVM) model to classify time series data with imbalanced class. The proposed method puts the fuzzy membership function on the constraint function. Through simulation studies, this research aims to assess the performance of the developed FSVM in classifying time series data. Based on the classification accuracy criteria, we prove that the proposed FSVM method outperforms the standard SVM method for the classification of multiclass time series data

    Assessment of Factors Influencing Intent-to-Use Big Data Analytics in an Organization: A Survey Study

    Get PDF
    The central question was how the relationship between trust-in-technology and intent-to-use Big Data Analytics in an organization is mediated by both Perceived Risk and Perceived Usefulness. Big Data Analytics is quickly becoming a critically important driver for business success. Many organizations are increasing their Information Technology budgets on Big Data Analytics capabilities. Technology Acceptance Model stands out as a critical theoretical lens primarily due to its assessment approach and predictive explanatory capacity to explain individual behaviors in the adoption of technology. Big Data Analytics use in this study was considered a voluntary act, therefore, well aligned with the Theory of Reasoned Action and the Technology Acceptance Model. Both theories have validated the relationships between beliefs, attitudes, intentions and usage behavior. Predicting intent-to-use Big Data Analytics is a broad phenomenon covering multiple disciplines in literature. Therefore, a robust methodology was employed to explore the richness of the topic. A deterministic philosophical approach was applied using a survey method approach as an exploratory study which is a variant of the mixed methods sequential exploratory design. The research approach consisted of two phases: instrument development and quantitative. The instrument development phase was anchored with a systemic literature review to develop an instrument and ended with a pilot study. The pilot study was instrumental in improving the tool and switching from a planned covariance-based SEM approach to PLS-SEM for data analysis. A total of 277 valid observations were collected. PLS-SEM was leveraged for data analysis because of the prediction focus of the study and the requirement to assess both reflective and formative measures in the same research model. The measurement and structural models were tested using the PLS algorithm. R2, f2, and Q2 were used as the basis for the acceptable fit measurement. Based on the valid structural model and after running the bootstrapping procedure, Perceived Risk has no mediating effect on Trust-in-Technology on Intent-to-Use. Perceived Usefulness has a full mediating effect. Level of education, training, experience and the perceived capability of analytics within an organization are good predictors of Trust-in-Technology

    Digital technologies catalyzing business model innovation in supply chain management - the case of parcel lockers as a solution for improving sustainable city mobility

    Get PDF
    The rise of information technologies pushes companies into digital restructuring. Organizations integrating emerging technologies into their supply chains can boost efficiency by streamlining processes and making more informed decisions using predictive analytics. This research dis-cusses major enablers for digital transformation and presents the application of those along different parts of a digital supply chain, while focusing on technical characteristics, implementations, and impact on organizational capabilities and strategies. The parcel lockers are a technology that sustains and improves last-mile delivery. By combining it with night-time delivery improves the City's Sustainable Mobility and, therefore, reduces the local emissions and city congestion

    GENDIS : genetic discovery of shapelets

    Get PDF
    In the time series classification domain, shapelets are subsequences that are discriminative of a certain class. It has been shown that classifiers are able to achieve state-of-the-art results by taking the distances from the input time series to different discriminative shapelets as the input. Additionally, these shapelets can be visualized and thus possess an interpretable characteristic, making them appealing in critical domains, where longitudinal data are ubiquitous. In this study, a new paradigm for shapelet discovery is proposed, which is based on evolutionary computation. The advantages of the proposed approach are that: (i) it is gradient-free, which could allow escaping from local optima more easily and supports non-differentiable objectives; (ii) no brute-force search is required, making the algorithm scalable; (iii) the total amount of shapelets and the length of each of these shapelets are evolved jointly with the shapelets themselves, alleviating the need to specify this beforehand; (iv) entire sets are evaluated at once as opposed to single shapelets, which results in smaller final sets with fewer similar shapelets that result in similar predictive performances; and (v) the discovered shapelets do not need to be a subsequence of the input time series. We present the results of the experiments, which validate the enumerated advantages

    Shapelet Transforms for Univariate and Multivariate Time Series Classification

    Get PDF
    Time Series Classification (TSC) is a growing field of machine learning research. One particular algorithm from the TSC literature is the Shapelet Transform (ST). Shapelets are a phase independent subsequences that are extracted from times series to form discriminatory features. It has been shown that using the shapelets to transform the datasets into a new space can improve performance. One of the major problems with ST, is that the algorithm is O(n2m4), where n is the number of time series and m is the length of the series. As a problem increases in sizes, or additional dimensions are added, the algorithm quickly becomes computationally infeasible. The research question addressed is whether the shapelet transform be improved in terms of accuracy and speed. Making algorithmic improvements to shapelets will enable the development of multivariate shapelet algorithms that can attempt to solve much larger problems in realistic time frames. In support of this thesis a new distance early abandon method is proposed. A class balancing algorithm is implemented, which uses a one vs. all multi class information gain that enables heuristics which were developed for two class problems. To support these improvements a large scale analysis of the best shapelet algorithms is conducted as part of a larger experimental evaluation. ST is proven to be one of the most accurate algorithms in TSC on the UCR-UEA datasets. Contract classification is proposed for shapelets, where a fixed run time is set, and the number of shapelets is bounded. Four search algorithms are evaluated with fixed run times of one hour and one day, three of which are not significantly worse than a full enumeration. Finally, three multivariate shapelet algorithms are developed and compared to benchmark results and multivariate dynamic time warping

    Design of Data-Driven Decision Support Systems for Business Process Standardization

    Get PDF
    Increasingly dynamic environments require organizations to engage in business process standardization (BPS) in response to environmental change. However, BPS depends on numerous contingency factors from different layers of the organization, such as strategy, business models (BMs), business processes (BPs) and application systems that need to be well-understood (“comprehended”) and taken into account by decision-makers for selecting appropriate standard BP designs that fit the organization. Besides, common approaches to BPS are non-data-driven and frequently do not exploit increasingly avail-able data in organizations. Therefore, this thesis addresses the following research ques-tion: “How to design data-driven decision support systems to increase the comprehen-sion of contingency factors on business process standardization?”. Theoretically grounded in organizational contingency theory (OCT), this thesis address-es the research question by conducting three design science research (DSR) projects to design data-driven decision support systems (DSSs) for SAP R/3 and S/4 HANA ERP systems that increase comprehension of BPS contingency factors. The thesis conducts the DSR projects at an industry partner within the context of a BPS and SAP S/4 HANA transformation program at a global manufacturing corporation. DSR project 1 designs a data-driven “Business Model Mining” system that automatical-ly “mines” BMs from data in application systems and represents results in an interactive “Business Model Canvas” (BMC) BI dashboard to comprehend BM-related BPS con-tingency factors. The project derives generic design requirements and a blueprint con-ceptualization for BMM systems and suggests an open, standardized reference data model for BMM. The project implements the software artifact “Business Model Miner” in Microsoft Azure / PowerBI and demonstrates technical feasibility by using data from an educational SAP S/4 HANA system, an open reference dataset, and three real-life SAP R/3 ERP systems. A field evaluation with 21 managers at the industry partner finds differences between tool results and BMCs created by managers and thus the po-tential for a complementary role of BMM tools to enrich the comprehension of BMs. A further controlled laboratory experiment with 142 students finds significant beneficial impacts on subjective and objective comprehension in terms of effectiveness, efficiency, and relative efficiency. Second, DSR project 2 designs a data-driven process mining DSS “KeyPro” to semi-automatically discover and prioritize the set of BPs occurring in an organization from log data to concentrate BPS initiatives on important BPs given limited organizational resources. The project derives objective and quantifiable BP importance metrics from BM and BPM literature and implements KeyPro for SAP R/3 ERP and S/4 HANA sys-tems in Microsoft SQL Server / Azure and interactive PowerBI dashboards. A field evaluation with 52 managers compares BPs detected manually by decision-makers against BPs discovered by KeyPro and reveals significant differences and a complemen-tary role of the artifact to deliver additional insights into the set of BPs in the organiza-tion. Finally, a controlled laboratory experiment with 30 students identifies the dash-boards with the lowest comprehension for further development. Third, OCT requires organizations to select a standard BP design that matches contin-gencies. Thus, DSR project 3 designs a process mining DSS to select a standard BP from a repository of different alternative designs based on the similarity of BPS contin-gency factors between the as-is process and the to-be standard processes. DSR project 3 thus derives four different process model variants for representing BPS contingency factors that vary according to determinant factors of process model comprehension (PMC) identified in PMC literature. A controlled laboratory evaluation with 150 stu-dents identifies significant differences in PMC. Based on laboratory findings, the DSS is implemented in the BPM platform “Apromore” to select standard BP reference mod-els from the SAP Best Practices Explorer for SAP S/4 HANA and applied for the pur-chase-to-pay and order-to-cash process of a manufacturing company

    Predictive Modelling of Retail Banking Transactions for Credit Scoring, Cross-Selling and Payment Pattern Discovery

    Get PDF
    Evaluating transactional payment behaviour offers a competitive advantage in the modern payment ecosystem, not only for confirming the presence of good credit applicants or unlocking the cross-selling potential between the respective product and service portfolios of financial institutions, but also to rule out bad credit applicants precisely in transactional payments streams. In a diagnostic test for analysing the payment behaviour, I have used a hybrid approach comprising a combination of supervised and unsupervised learning algorithms to discover behavioural patterns. Supervised learning algorithms can compute a range of credit scores and cross-sell candidates, although the applied methods only discover limited behavioural patterns across the payment streams. Moreover, the performance of the applied supervised learning algorithms varies across the different data models and their optimisation is inversely related to the pre-processed dataset. Subsequently, the research experiments conducted suggest that the Two-Class Decision Forest is an effective algorithm to determine both the cross-sell candidates and creditworthiness of their customers. In addition, a deep-learning model using neural network has been considered with a meaningful interpretation of future payment behaviour through categorised payment transactions, in particular by providing additional deep insights through graph-based visualisations. However, the research shows that unsupervised learning algorithms play a central role in evaluating the transactional payment behaviour of customers to discover associations using market basket analysis based on previous payment transactions, finding the frequent transactions categories, and developing interesting rules when each transaction category is performed on the same payment stream. Current research also reveals that the transactional payment behaviour analysis is multifaceted in the financial industry for assessing the diagnostic ability of promotion candidates and classifying bad credit applicants from among the entire customer base. The developed predictive models can also be commonly used to estimate the credit risk of any credit applicant based on his/her transactional payment behaviour profile, combined with deep insights from the categorised payment transactions analysis. The research study provides a full review of the performance characteristic results from different developed data models. Thus, the demonstrated data science approach is a possible proof of how machine learning models can be turned into cost-sensitive data models
    • 

    corecore