1,251 research outputs found

    Feature regularization and learning for human activity recognition.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Feature extraction is an essential component in the design of human activity recognition model. However, relying on extracted features alone for learning often makes the model a suboptimal model. Therefore, this research work seeks to address such potential problem by investigating feature regularization. Feature regularization is used for encapsulating discriminative patterns that are needed for better and efficient model learning. Firstly, a within-class subspace regularization approach is proposed for eigenfeatures extraction and regularization in human activity recognition. In this ap- proach, the within-class subspace is modelled using more eigenvalues from the reliable subspace to obtain a four-parameter modelling scheme. This model enables a better and true estimation of the eigenvalues that are distorted by the small sample size effect. This regularization is done in one piece, thereby avoiding undue complexity of modelling eigenspectrum differently. The whole eigenspace is used for performance evaluation because feature extraction and dimensionality reduction are done at a later stage of the evaluation process. Results show that the proposed approach has better discriminative capacity than several other subspace approaches for human activity recognition. Secondly, with the use of likelihood prior probability, a new regularization scheme that improves the loss function of deep convolutional neural network is proposed. The results obtained from this work demonstrate that a well regularized feature yields better class discrimination in human activity recognition. The major contribution of the thesis is the development of feature extraction strategies for determining discriminative patterns needed for efficient model learning

    Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensin

    Barrier Coverage in Wireless Sensor Networks

    Get PDF
    Barrier coverage is a critical issue in wireless sensor networks (WSNs) for security applications, which aims to detect intruders attempting to penetrate protected areas. However, it is difficult to achieve desired barrier coverage after initial random deployment of sensors because their locations cannot be controlled or predicted. In this dissertation, we explore how to leverage the mobility capacity of mobile sensors to improve the quality of barrier coverage. We first study the 1-barrier coverage formation problem in heterogeneous sensor networks and explore how to efficiently use different types of mobile sensors to form a barrier with pre-deployed different types of stationary sensors. We introduce a novel directional barrier graph model and prove that the minimum cost of mobile sensors required to form a barrier with stationary sensors is the length of the shortest path from the source node to the destination node on the graph. In addition, we formulate the problem of minimizing the cost of moving mobile sensors to fill in the gaps on the shortest path as a minimum cost bipartite assignment problem and solve it in polynomial time using the Hungarian algorithm. We further study the k-barrier coverage formation problem in sensor networks. We introduce a novel weighted barrier graph model and prove that determining the minimum number of mobile sensors required to form k-barrier coverage is related with but not equal to finding k vertex-disjoint paths with the minimum total length on the WBG. With this observation, we propose an optimal algorithm and a faster greedy algorithm to find the minimum number of mobile sensors required to form k-barrier coverage. Finally, we study the barrier coverage formation problem when sensors have location errors. We derive the minimum number of mobile sensors needed to fill in a gap with a guarantee when location errors exist and propose a progressive method for mobile sensor deployment. Furthermore, we propose a fault tolerant weighted barrier graph to find the minimum number of mobile sensors needed to form barrier coverage with a guarantee. Both analytical and experimental studies demonstrated the effectiveness of our proposed algorithms

    Modelling human network behaviour using simulation and optimization tools: the need for hybridization

    Get PDF
    The inclusion of stakeholder behaviour in Operations Research / Industrial Engineering (OR/IE) models has gained much attention in recent years. Behavioural and cognitive traits of people and groups have been integrated in simulation models (mainly through agent-based approaches) as well as in optimization algorithms. However, especially the influence of relations between different actors in human networks is a broad and interdisciplinary topic that has not yet been fully investigated. This paper analyses, from an OR/IE point of view, the existing literature on behaviour-related factors in human networks. This review covers different application fields, including: supply chain management, public policies in emergency situations, and Internet-based human networks. The review reveals that the methodological approach of choice (either simulation or optimization) is highly dependent on the application area. However, an integrated approach combining simulation and optimization is rarely used. Thus, the paper proposes the hybridization of simulation with optimization as one of the best strategies to incorporate human behaviour in human networks and the resulting uncertainty, randomness, and dynamism in related OR/IE models.Peer Reviewe

    Protecting privacy of semantic trajectory

    Get PDF
    The growing ubiquity of GPS-enabled devices in everyday life has made large-scale collection of trajectories feasible, providing ever-growing opportunities for human movement analysis. However, publishing this vulnerable data is accompanied by increasing concerns about individuals’ geoprivacy. This thesis has two objectives: (1) propose a privacy protection framework for semantic trajectories and (2) develop a Python toolbox in ArcGIS Pro environment for non-expert users to enable them to anonymize trajectory data. The former aims to prevent users’ re-identification when knowing the important locations or any random spatiotemporal points of users by swapping their important locations to new locations with the same semantics and unlinking the users from their trajectories. This is accomplished by converting GPS points into sequences of visited meaningful locations and moves and integrating several anonymization techniques. The second component of this thesis implements privacy protection in a way that even users without deep knowledge of anonymization and coding skills can anonymize their data by offering an all-in-one toolbox. By proposing and implementing this framework and toolbox, we hope that trajectory privacy is better protected in research

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    The 1982 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers
    • …
    corecore