1,396 research outputs found

    Slice and Dice: A Physicalization Workflow for Anatomical Edutainment

    Get PDF
    During the last decades, anatomy has become an interesting topic in education---even for laymen or schoolchildren. As medical imaging techniques become increasingly sophisticated, virtual anatomical education applications have emerged. Still, anatomical models are often preferred, as they facilitate 3D localization of anatomical structures. Recently, data physicalizations (i.e., physical visualizations) have proven to be effective and engaging---sometimes, even more than their virtual counterparts. So far, medical data physicalizations involve mainly 3D printing, which is still expensive and cumbersome. We investigate alternative forms of physicalizations, which use readily available technologies (home printers) and inexpensive materials (paper or semi-transparent films) to generate crafts for anatomical edutainment. To the best of our knowledge, this is the first computer-generated crafting approach within an anatomical edutainment context. Our approach follows a cost-effective, simple, and easy-to-employ workflow, resulting in assemblable data sculptures (i.e., semi-transparent sliceforms). It primarily supports volumetric data (such as CT or MRI), but mesh data can also be imported. An octree slices the imported volume and an optimization step simplifies the slice configuration, proposing the optimal order for easy assembly. A packing algorithm places the resulting slices with their labels, annotations, and assembly instructions on a paper or transparent film of user-selected size, to be printed, assembled into a sliceform, and explored. We conducted two user studies to assess our approach, demonstrating that it is an initial positive step towards the successful creation of interactive and engaging anatomical physicalizations

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Assessment in and of serious games: an overview

    Get PDF
    There is a consensus that serious games have a significant potential as a tool for instruction. However, their effectiveness in terms of learning outcomes is still understudied mainly due to the complexity involved in assessing intangible measures. A systematic approach—based on established principles and guidelines—is necessary to enhance the design of serious games, and many studies lack a rigorous assessment. An important aspect in the evaluation of serious games, like other educational tools, is user performance assessment. This is an important area of exploration because serious games are intended to evaluate the learning progress as well as the outcomes. This also emphasizes the importance of providing appropriate feedback to the player. Moreover, performance assessment enables adaptivity and personalization to meet individual needs in various aspects, such as learning styles, information provision rates, feedback, and so forth. This paper first reviews related literature regarding the educational effectiveness of serious games. It then discusses how to assess the learning impact of serious games and methods for competence and skill assessment. Finally, it suggests two major directions for future research: characterization of the player's activity and better integration of assessment in games

    Pairing craft-making with Mandarin eBooks: An investigation into the use of craft for language learning by pre-schoolers

    Get PDF
    Bilingual ethnic Chinese parents are concerned about their preschoolers’ learning of their mother tongue. Many allow their children to learn Mandarin by accessing language applications on mobile devices. However the effectiveness of solely using mobile devices as a learning tool for preschoolers is debatable. This paper presents a field investigation on how adult-facilitated craft-making, generates greater interest the reading of Mandarin eBooks and retention of the stories. The data suggests pairing of activities may be useful to children from across language abilities. This also highlights a need for designers and educators to formulate a holistic design approach in the development of preschool mobile learning content

    Combining Interaction Design and Gaming Technologies for the Development of Interactive Archaeological Content Presentation Systems

    Get PDF
    Our main objective is to produce state-of-the-art edutainment and serious game end-systems, which satisfy the requirements of all three parties involved in the development process: content experts, end-users and application developers. Their requirements are often cross disciplinary, as each party involved in the process requires solutions to a number of problems which need to be answered in a systematic and complete manner. The ultimate goal of this process is to introduce an efficient, extendable and aesthetically pleasing end-system. In order to achieve these goals, we address and attempt to resolve the most common presentation design issues that arise during the process of interaction design. Completion of this process enables the actual system development to commence with a precise and complete specification of content features and system characteristics
    • …
    corecore