186,317 research outputs found

    Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-based Distributed Deep Learning

    Get PDF
    One decade ago, Bitcoin was introduced, becoming the first cryptocurrency and establishing the concept of "blockchain" as a distributed ledger. As of today, there are many different implementations of cryptocurrencies working over a blockchain, with different approaches and philosophies. However, many of them share one common feature: they require proof-of-work to support the generation of blocks (mining) and, eventually, the generation of money. This proof-of-work scheme often consists in the resolution of a cryptography problem, most commonly breaking a hash value, which can only be achieved through brute-force. The main drawback of proof-of-work is that it requires ridiculously large amounts of energy which do not have any useful outcome beyond supporting the currency. In this paper, we present a theoretical proposal that introduces a proof-of-useful-work scheme to support a cryptocurrency running over a blockchain, which we named Coin.AI. In this system, the mining scheme requires training deep learning models, and a block is only mined when the performance of such model exceeds a threshold. The distributed system allows for nodes to verify the models delivered by miners in an easy way (certainly much more efficiently than the mining process itself), determining when a block is to be generated. Additionally, this paper presents a proof-of-storage scheme for rewarding users that provide storage for the deep learning models, as well as a theoretical dissertation on how the mechanics of the system could be articulated with the ultimate goal of democratizing access to artificial intelligence.Comment: 17 pages, 5 figure

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    A computational model for real-time calculation of electric field due to transcranial magnetic stimulation in clinics

    Get PDF
    The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI). Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed codewith neuronavigation toolswill permit real-time evaluation of the stimulated brain regions during the TMSdelivery, thus improving the efficacy of clinical applications

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure
    • …
    corecore