115,515 research outputs found

    Cache Serializability: Reducing Inconsistency in Edge Transactions

    Full text link
    Read-only caches are widely used in cloud infrastructures to reduce access latency and load on backend databases. Operators view coherent caches as impractical at genuinely large scale and many client-facing caches are updated in an asynchronous manner with best-effort pipelines. Existing solutions that support cache consistency are inapplicable to this scenario since they require a round trip to the database on every cache transaction. Existing incoherent cache technologies are oblivious to transactional data access, even if the backend database supports transactions. We propose T-Cache, a novel caching policy for read-only transactions in which inconsistency is tolerable (won't cause safety violations) but undesirable (has a cost). T-Cache improves cache consistency despite asynchronous and unreliable communication between the cache and the database. We define cache-serializability, a variant of serializability that is suitable for incoherent caches, and prove that with unbounded resources T-Cache implements this new specification. With limited resources, T-Cache allows the system manager to choose a trade-off between performance and consistency. Our evaluation shows that T-Cache detects many inconsistencies with only nominal overhead. We use synthetic workloads to demonstrate the efficacy of T-Cache when data accesses are clustered and its adaptive reaction to workload changes. With workloads based on the real-world topologies, T-Cache detects 43-70% of the inconsistencies and increases the rate of consistent transactions by 33-58%.Comment: Ittay Eyal, Ken Birman, Robbert van Renesse, "Cache Serializability: Reducing Inconsistency in Edge Transactions," Distributed Computing Systems (ICDCS), IEEE 35th International Conference on, June~29 2015--July~2 201

    A Framework for Transactional Consistency Models with Atomic Visibility

    Get PDF
    Modern distributed systems often rely on databases that achieve scalability by providing only weak guarantees about the consistency of distributed transaction processing. The semantics of programs interacting with such a database depends on its consistency model, defining these guarantees. Unfortunately, consistency models are usually stated informally or using disparate formalisms, often tied to the database internals. To deal with this problem, we propose a framework for specifying a variety of consistency models for transactions uniformly and declaratively. Our specifications are given in the style of weak memory models, using structures of events and relations on them. The specifications are particularly concise because they exploit the property of atomic visibility guaranteed by many consistency models: either all or none of the updates by a transaction can be visible to another one. This allows the specifications to abstract from individual events inside transactions. We illustrate the use of our framework by specifying several existing consistency models. To validate our specifications, we prove that they are equivalent to alternative operational ones, given as algorithms closer to actual implementations. Our work provides a rigorous foundation for developing the metatheory of the novel form of concurrency arising in weakly consistent large-scale databases

    CAP Theorem: Revision of its related consistency models

    Get PDF
    [EN] The CAP theorem states that only two of these properties can be simultaneously guaranteed in a distributed service: (i) consistency, (ii) availability, and (iii) network partition tolerance. This theorem was stated and proved assuming that "consistency" refers to atomic consistency. However, multiple consistency models exist and atomic consistency is located at the strongest edge of that spectrum. Many distributed services deployed in cloud platforms should be highly available and scalable. Network partitions may arise in those deployments and should be tolerated. One way of dealing with CAP constraints consists in relaxing consistency. Therefore, it is interesting to explore the set of consistency models not supported in an available and partition-tolerant service (CAP-constrained models). Other weaker consistency models could be maintained when scalable services are deployed in partitionable systems (CAP-free models). Three contributions arise: (1) multiple other CAP-constrained models are identified, (2) a borderline between CAP-constrained and CAP-free models is set, and (3) a hierarchy of consistency models depending on their strength and convergence is built.Muñoz-EscoĂ­, FD.; Juan MarĂ­n, RD.; GarcĂ­a Escriva, JR.; GonzĂĄlez De MendĂ­vil Moreno, JR.; Bernabeu AubĂĄn, JM. (2019). CAP Theorem: Revision of its related consistency models. The Computer Journal. 62(6):943-960. https://doi.org/10.1093/comjnl/bxy142S943960626Davidson, S. B., Garcia-Molina, H., & Skeen, D. (1985). Consistency in a partitioned network: a survey. ACM Computing Surveys, 17(3), 341-370. doi:10.1145/5505.5508Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News, 33(2), 51-59. doi:10.1145/564585.564601Muñoz-EscoĂ­, F. D., & BernabĂ©u-AubĂĄn, J. M. (2016). A survey on elasticity management in PaaS systems. Computing, 99(7), 617-656. doi:10.1007/s00607-016-0507-8Brewer, E. (2012). CAP twelve years later: How the «rules» have changed. Computer, 45(2), 23-29. doi:10.1109/mc.2012.37Attiya, H., Ellen, F., & Morrison, A. (2017). Limitations of Highly-Available Eventually-Consistent Data Stores. IEEE Transactions on Parallel and Distributed Systems, 28(1), 141-155. doi:10.1109/tpds.2016.2556669Viotti, P., & Vukolić, M. (2016). Consistency in Non-Transactional Distributed Storage Systems. ACM Computing Surveys, 49(1), 1-34. doi:10.1145/2926965Burckhardt, S. (2014). Principles of Eventual Consistency. Foundations and TrendsÂź in Programming Languages, 1(1-2), 1-150. doi:10.1561/2500000011Herlihy, M. P., & Wing, J. M. (1990). Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3), 463-492. doi:10.1145/78969.78972Lamport. (1979). How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Transactions on Computers, C-28(9), 690-691. doi:10.1109/tc.1979.1675439Ladin, R., Liskov, B., Shrira, L., & Ghemawat, S. (1992). Providing high availability using lazy replication. ACM Transactions on Computer Systems, 10(4), 360-391. doi:10.1145/138873.138877Yu, H., & Vahdat, A. (2002). Design and evaluation of a conit-based continuous consistency model for replicated services. ACM Transactions on Computer Systems, 20(3), 239-282. doi:10.1145/566340.566342Curino, C., Jones, E., Zhang, Y., & Madden, S. (2010). Schism. Proceedings of the VLDB Endowment, 3(1-2), 48-57. doi:10.14778/1920841.1920853Das, S., Agrawal, D., & El Abbadi, A. (2013). ElasTraS. ACM Transactions on Database Systems, 38(1), 1-45. doi:10.1145/2445583.2445588Chen, Z., Yang, S., Tan, S., He, L., Yin, H., & Zhang, G. (2014). A new fragment re-allocation strategy for NoSQL database systems. Frontiers of Computer Science, 9(1), 111-127. doi:10.1007/s11704-014-3480-4Kamal, J., Murshed, M., & Buyya, R. (2016). Workload-aware incremental repartitioning of shared-nothing distributed databases for scalable OLTP applications. Future Generation Computer Systems, 56, 421-435. doi:10.1016/j.future.2015.09.024Elghamrawy, S. M., & Hassanien, A. E. (2017). A partitioning framework for Cassandra NoSQL database using Rendezvous hashing. The Journal of Supercomputing, 73(10), 4444-4465. doi:10.1007/s11227-017-2027-5Muñoz-EscoĂ­, F. D., GarcĂ­a-EscrivĂĄ, J.-R., Sendra-Roig, J. S., BernabĂ©u-AubĂĄn, J. M., & GonzĂĄlez de MendĂ­vil, J. R. (2018). Eventual Consistency: Origin and Support. Computing and Informatics, 37(5), 1037-1072. doi:10.4149/cai_2018_5_1037Fischer, M. J., Lynch, N. A., & Paterson, M. S. (1985). Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2), 374-382. doi:10.1145/3149.21412

    MAINTENANCE OF ACCURACY FOR RELIABLE TRANSACTION IN CLOUD SYSTEM

    Get PDF
    In recent times, a lot of work has been made on provision of some level of assurance among data as well as policies. Trusted transactions do not break credential or else policy inconsistencies over transaction duration hence in our work we formalize perception of trusted transactions. A safe transaction is trustworthy as well as database accurate and we present safe transactions that recognize transactions that are both trustworthy and obey atomicity, consistency, isolation, and durability properties of distributed database systems. We put forward a novel algorithm known as two-phase validation that operates in two phases such as collection as well as validation. We initiate a protocol of Two-phase validation commit that makes sure of safe transaction by means of checking policy, as well as data consistency throughout transaction execution. Protocol of Two-phase validation commit is an altered version of fundamental two-phase validation commit protocols

    Fast Distributed Transactions for Partitioned Database Systems.

    Get PDF
    ABSTRACT Many distributed storage systems achieve high data access throughput via partitioning and replication, each system with its own advantages and tradeoffs. In order to achieve high scalability, however, today's systems generally reduce transactional support, disallowing single transactions from spanning multiple partitions. Calvin is a practical transaction scheduling and data replication layer that uses a deterministic ordering guarantee to significantly reduce the normally prohibitive contention costs associated with distributed transactions. Unlike previous deterministic database system prototypes, Calvin supports disk-based storage, scales near-linearly on a cluster of commodity machines, and has no single point of failure. By replicating transaction inputs rather than effects, Calvin is also able to support multiple consistency levels-including Paxosbased strong consistency across geographically distant replicas-at no cost to transactional throughput

    Robustness Against Transactional Causal Consistency

    Get PDF
    Distributed storage systems and databases are widely used by various types of applications. Transactional access to these storage systems is an important abstraction allowing application programmers to consider blocks of actions (i.e., transactions) as executing atomically. For performance reasons, the consistency models implemented by modern databases are weaker than the standard serializability model, which corresponds to the atomicity abstraction of transactions executing over a sequentially consistent memory. Causal consistency for instance is one such model that is widely used in practice. In this paper, we investigate application-specific relationships between several variations of causal consistency and we address the issue of verifying automatically if a given transactional program is robust against causal consistency, i.e., all its behaviors when executed over an arbitrary causally consistent database are serializable. We show that programs without write-write races have the same set of behaviors under all these variations, and we show that checking robustness is polynomial time reducible to a state reachability problem in transactional programs over a sequentially consistent shared memory. A surprising corollary of the latter result is that causal consistency variations which admit incomparable sets of behaviors admit comparable sets of robust programs. This reduction also opens the door to leveraging existing methods and tools for the verification of concurrent programs (assuming sequential consistency) for reasoning about programs running over causally consistent databases. Furthermore, it allows to establish that the problem of checking robustness is decidable when the programs executed at different sites are finite-state
    • 

    corecore