28,458 research outputs found

    Forecasting People Trajectories and Head Poses by Jointly Reasoning on Tracklets and Vislets

    Full text link
    In this work, we explore the correlation between people trajectories and their head orientations. We argue that people trajectory and head pose forecasting can be modelled as a joint problem. Recent approaches on trajectory forecasting leverage short-term trajectories (aka tracklets) of pedestrians to predict their future paths. In addition, sociological cues, such as expected destination or pedestrian interaction, are often combined with tracklets. In this paper, we propose MiXing-LSTM (MX-LSTM) to capture the interplay between positions and head orientations (vislets) thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. We additionally exploit the head orientations as a proxy for the visual attention, when modeling social interactions. MX-LSTM predicts future pedestrians location and head pose, increasing the standard capabilities of the current approaches on long-term trajectory forecasting. Compared to the state-of-the-art, our approach shows better performances on an extensive set of public benchmarks. MX-LSTM is particularly effective when people move slowly, i.e. the most challenging scenario for all other models. The proposed approach also allows for accurate predictions on a longer time horizon.Comment: Accepted at IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2019. arXiv admin note: text overlap with arXiv:1805.0065

    The typical developmental trajectory of social and executive functions in late adolescence and early adulthood.

    Get PDF
    Executive functions and social cognition develop through childhood into adolescence/early adulthood and are important for adaptive goal-oriented behaviour (Apperly, Samson & Humphreys, 2009; Blakemore & Choudhury, 2006). These functions are attributed to frontal networks known to undergo protracted maturation into early adulthood (Barker, Andrade, Morton, Romanowski & Bowles, 2010; Lebel, Walker, Leemans, Phillips & Beaulieu, 2008) although social cognition functions are also associated with widely distributed networks. Previously, non-linear development has been reported around puberty on an emotion match to sample task (McGivern, Andersen, Byrd, Mutter & Reilly, 2002) and for IQ in mid adolescence (Ramsden et al., 2011). However, there are currently little data on the typical development of social and executive functions in late adolescence and early adulthood. In a cross sectional design, 98 participants completed tests of social cognition and executive function, Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), Positive and Negative Affect Scale (Watson, Clark & Tellegan, 1988), Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983) and measures of pubertal development and demographics at age 17, 18 and 19. Non-linear age differences for letter fluency and concept formation executive functions were found, with a trough in functional ability in 18 year olds compared to other groups. There were no age group differences on social cognition measures. Gender accounted for differences on one scale of concept formation, one dynamic social interaction scale and two empathy scales. The clinical, developmental and educational implications of these findings are discussed

    Action and behavior: a free-energy formulation

    Get PDF
    We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception
    corecore