695 research outputs found

    The Maximal Positively Invariant Set: Polynomial Setting

    Get PDF
    This note considers the maximal positively invariant set for polynomial discrete time dynamics subject to constraints specified by a basic semialgebraic set. The note utilizes a relatively direct, but apparently overlooked, fact stating that the related preimage map preserves basic semialgebraic structure. In fact, this property propagates to underlying set--dynamics induced by the associated restricted preimage map in general and to its maximal trajectory in particular. The finite time convergence of the corresponding maximal trajectory to the maximal positively invariant set is verified under reasonably mild conditions. The analysis is complemented with a discussion of computational aspects and a prototype implementation based on existing toolboxes for polynomial optimization

    Global, Unified Representation of Heterogenous Robot Dynamics Using Composition Operators: A Koopman Direct Encoding Method

    Full text link
    The dynamic complexity of robots and mechatronic systems often pertains to the hybrid nature of dynamics, where governing equations consist of heterogenous equations that are switched depending on the state of the system. Legged robots and manipulator robots experience contact-noncontact discrete transitions, causing switching of governing equations. Analysis of these systems have been a challenge due to the lack of a global, unified model that is amenable to analysis of the global behaviors. Composition operator theory has the potential to provide a global, unified representation by converting them to linear dynamical systems in a lifted space. The current work presents a method for encoding nonlinear heterogenous dynamics into a high dimensional space of observables in the form of Koopman operator. First, a new formula is established for representing the Koopman operator in a Hilbert space by using inner products of observable functions and their composition with the governing state transition function. This formula, called Direct Encoding, allows for converting a class of heterogenous systems directly to a global, unified linear model. Unlike prevalent data-driven methods, where results can vary depending on numerical data, the proposed method is globally valid, not requiring numerical simulation of the original dynamics. A simple example validates the theoretical results, and the method is applied to a multi-cable suspension system.Comment: 12 pages, 7 figure

    Modeling Nonlinear Control Systems via Koopman Control Family: Universal Forms and Subspace Invariance Proximity

    Full text link
    This paper introduces the Koopman Control Family (KCF), a mathematical framework for modeling general discrete-time nonlinear control systems with the aim of providing a solid theoretical foundation for the use of Koopman-based methods in systems with inputs. We demonstrate that the concept of KCF can completely capture the behavior of nonlinear control systems on a (potentially infinite-dimensional) function space. By employing a generalized notion of subspace invariance under the KCF, we establish a universal form for finite-dimensional models, which encompasses the commonly used linear, bilinear, and linear switched models as specific instances. In cases where the subspace is not invariant under the KCF, we propose a method for approximating models in general form and characterize the model's accuracy using the concept of invariance proximity. The proposed framework naturally lends itself to the incorporation of data-driven methods in modeling and control.Comment: 16 page
    • …
    corecore