44 research outputs found

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Reactive Motions In A Fully Autonomous CRS Catalyst 5 Robotic Arm Based On RGBD Data

    Get PDF
    This study proposes a method to perform velocity estimation using motion blur in a single image frame along x and y axes in the camera coordinate system and intercept a moving object with a robotic arm. It will be shown that velocity estimation in a single image frame improves the system\u27s performance. The majority of previous studies in this area require at least two image frames to measure the target\u27s velocity. In addition, they mostly employ specialized equipments which are able to generate high torques and accelerations. The setup consists of a 5 degree of freedom robotic arm and a Kinect camera. The RGBD (Red, Green, Blue and Depth) camera provides the RGB and depth information which are used to detect the position of the target. As the object is moving within a single image frame, the image contains motion blur. To recognize and differentiate the object from blurred area, the image intensity profiles are studied. Accordingly, the method determines the blur parameters based on the changes in the intensity profile. The aforementioned blur parameters are the length of the object and the length of the partial blur. Based on motion blur, the velocities along x and y camera coordinate axes are estimated. However, as the depth frame cannot record motion blur, the velocity along axis in the camera coordinate frame is initially unknown. The vectors of position and velocity are transformed into world coordinate frame and subsequently, the prospective position of the object, after a predefined time interval, is predicted. In order to intercept, the end-effector of the robotic arm must reach this predicted position within the time interval as well. For the end-effector to reach the predicted position within the predefined time interval, the robot\u27s joint angles and accelerations are determined through inverse kinematic methods. Then the robotic arm starts its motion. Once the second depth frame is obtained, the object\u27s velocity along z axis can be calculated as well. Accordingly, the predicted position of the object is recalculated, and the motion of the manipulator is modified. The proposed method is compared with existing methods which need at least two image frames to estimate the velocity of the target. It is shown that under identical kinematic conditions, the functionality of the system is improved by times for our setup. In addition, the experiment is repeated for times and the velocity data is recorded. According to the experimental results, there are two major limitations in our system and setup. The system cannot determine the velocity along z in the camera coordinate system from the initial image frame. Consequently, if the object travels faster along this axis, it becomes more susceptible to failure. In addition, our manipulator is an unspecialized equipment which is not designed for producing high torques and accelerations. Accordingly, the task becomes more challenging. The main cause of error in the experiments was operator\u27s. It is necessary to have the object pass through the working volume of the robot. Besides, the object must be still inside the working volume after the predefined time interval. It is possible that the operator throw the object within the designated working volume, but it leaves it earlier than the specified time interval

    Attitude Compensation of Space Robots for Capturing Operation

    Get PDF

    Design and Modeling of 9 Degrees of Freedom Redundant Robotic Manipulator

    Get PDF
    In disaster areas, robot manipulators are used to rescue and clearance of sites. Because of the damaged area, they encounter disturbances like obstacles, and limited workspace to explore the area and to achieve the location of the victims. Increasing the degrees of freedom is required to boost the adaptability of manipulators to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. These robot manipulators offer a reliable way to handle the barrier challenges since they can search in places that humans can't reach. In this research paper, the 9-DOF robotic manipulator is designed, and an analytical model is developed to examine the system’s behavior in different scenarios. The kinematic and dynamic representation of the proposed model is analyzed to obtain the translation or rotation, and joint torques to achieve the expected position, velocity, and acceleration respectively. The number of degrees may be raised to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. The simulation of developed models is performed to ensure the adaptable movement of the manipulators working in distinct configurations and controlling their motion thoroughly and effectively. In the proposed configuration the joints can easily be moved to achieve the desired position of the end-effector and the results are satisfactory. The simulation results show that the redundant manipulator achieves the victim location with various configurations of the manipulator. Results reveal the effectiveness and efficacy of the proposed system

    Path Planning for a 6 DoF Robotic Arm Based on Whale Optimization Algorithm and Genetic Algorithm

    Get PDF
    The trajectory planning for robotic arms is a significant area of research, given its role in facilitating seamless trajectory execution and enhancing movement efficiency and accuracy. This paper focuses on the development of path planning algorithms for a robotic arm with six degrees of freedom. Specifically, three alternative approaches are explored: polynomial (cubic and quantic), Whale Optimization Algorithm (WOA), and Genetic Algorithm (GA). The comparison of outcomes between different methods revealed that polynomial methods were found to be more straightforward to implement, albeit constrained by the intricacy of the pathway. Upon examining the functioning of the WOA, it has been shown that it is well suited for all types of pathways, regardless of their level of complexity. In addition, when GA is applied, it has been shown less smoothness than WOA but also less complexity. In brief, WOA is deemed superior in the path planning process since it is more thorough in determining the optimal path due to the conical spiral path technique it employs in offering optimized path planning. in comparison to GA, WOA is better in implementation speed and accuracy. However, GA is smoother in start and finish path

    Path Planning for a 6 DoF Robotic Arm Based on Whale Optimization Algorithm and Genetic Algorithm

    Get PDF
    The trajectory planning for robotic arms is a significant area of research, given its role in facilitating seamless trajectory execution and enhancing movement efficiency and accuracy. This paper focuses on the development of path planning algorithms for a robotic arm with six degrees of freedom. Specifically, three alternative approaches are explored: polynomial (cubic and quantic), Whale Optimization Algorithm (WOA), and Genetic Algorithm (GA). The comparison of outcomes between different methods revealed that polynomial methods were found to be more straightforward to implement, albeit constrained by the intricacy of the pathway. Upon examining the functioning of the WOA, it has been shown that it is well suited for all types of pathways, regardless of their level of complexity. In addition, when GA is applied, it has been shown less smoothness than WOA but also less complexity. In brief, WOA is deemed superior in the path planning process since it is more thorough in determining the optimal path due to the conical spiral path technique it employs in offering optimized path planning. in comparison to GA, WOA is better in implementation speed and accuracy. However, GA is smoother in start and finish path

    Development of a mixed reality application to perform feasibility studies on new robotic use cases

    Get PDF
    Dissertação de mestrado integrado em Engenharia e Gestão IndustrialManufacturing companies are trying to affirm their position in the market by introducing new concepts and processes to their production systems. For this purpose, new technologies must be employed to ensure better performance and quality of their processes. Robotics has evolved a lot in the past years, creating new hardware and software technologies to answer the increasing demands of the markets. Collaborative robots are seen as one of the emerging and most promising technologies to answer industry 4.0 necessities. However, the expertise needed to implement these robots is not often found in small and medium-sized enterprises that represent a large share of the existing manufacturing companies. At the same time, mixed reality represents a new and immersive way to test new processes without physically deploying them. To tackle this problem, a mixed reality application is developed from top to bottom, aiming to facilitate the research and feasibility studies of new robotic use cases in the pre-study implementation phase. This application serves as a proof-of-concept, and it is not developed for the end user. First, the application's requirements are set to answer the manufacturing companies’ needs, providing two testing robots, an intuitive robot placement method, a trajectory modeling and parameterization system, and a result framework. Then the development of the application’s functionalities is explained, answering the requirements previously established. A collision detection system was defined and developed to perceive self and environmental collisions. Furthermore, a novel process to configure the robot based on imitation learning was developed. In the end, a painting tool was integrated into the robot's 3D model and used for a use-case study of a painting task. Then, the results were registered, and the application was accessed according to the non-functional requirements. Finally, a qualitative analysis was made to evaluate the fields where this new concept can help manufacturing companies improve the implementation success of new robotic applications.As empresas de manufatura estão a tentar afirmar sua posição no mercado introduzindo novos conceitos e processos nos seus sistemas de produção. Para isso, novas tecnologias devem ser empregues para garantir um melhor desempenho e qualidade dos seus processos. O campo da robótica evoluiu bastante nos últimos anos, criando novas tecnologias de hardware e software para atender à crescente procura dos mercados. Neste sentido, os robots colaborativos surgem como uma das tecnologias mais promissoras para atender às necessidades da indústria 4.0. No entanto, o conhecimento necessário para implementar este tipo de robots não é frequentemente encontrado em pequenas e médias empresas que representam grande parte das empresas de manufatura existentes. Ao mesmo tempo, a realidade mista representa uma maneira nova e imersiva de testar novos processos sem implementá-los fisicamente. Para fazer face ao problema, uma aplicação de realidade mista é desenvolvida com o objetivo de facilitar a pesquisa e realização de estudos de viabilidade de novos casos de uso de robótica na fase de pré-estudo da sua implementação. A aplicação serve como prova de conceito e não é desenvolvida para o utilizador final. Primeiramente, os requisitos da aplicação são definidos de acordo com as necessidades das empresas de manufatura, sendo fornecidos dois robots de teste, um método intuitivo de posicionamento, um sistema de modelagem e parametrização de trajetórias e uma estrutura de resultados. Em seguida é apresentado o processo de desenvolvimento das funcionalidades da aplicação, tendo em conta os requisitos previamente estabelecidos. Um sistema de deteção de colisões foi pensado e desenvolvido para localizar e representar colisões do robot com a sua própria estrutura física e com o ambiente real. Além disso, foi desenvolvido um novo processo para definir a pose inicial do robot baseado na aprendizagem por imitação. No final, uma ferramenta de pintura foi desenvolvida e integrada no modelo 3D do robot com o objetivo de estudar o desempenho da aplicação numa tarefa de pintura. Em seguida, os resultados foram registados e a aplicação avaliada de acordo com os requisitos não funcionais. Por fim, foi realizada uma análise qualitativa para avaliar os campos em que este novo conceito pode ajudar as empresas de manufatura a melhorar o sucesso da implementação de novas aplicações robóticas

    Modernization of 6R robot

    Get PDF
    У цій роботі автор розглянув можливості маніпулятора на мобільній платформі Kuka YouBot для використанні його у лабораторіях чи майстернях. Завдяки використанню мобільної платформи площа роботи такого робота значно збільшується. Для такої платформи було розроблене програмне рішення, яке приймає на вхід поточне та бажане положення об’єкта у просторі, а на виході отримаємо необхідні кути повороту для кожного проміжку часу, які далі передаються у контролер типу Feedforward + PI Feedback, налаштування якого також були розглянуті. На підставі отриманих значень була проведена симуляція у середовищі CoppeliaSim EDU, яка демонструє усі вище надані переваги. Окрім програми для керування роботом, також була запропонована додаткова гідросистема і розраховані гідроциліндри для фіксації та переміщення об’єкта, над яким проводяться маніпуляції роботом. Така гідросистема надає змогу надійно закріпити об’єкт, наприклад мотоцикл, а потім за допомогою великого гідроциліндра підняти його угору для збільшення можливостей щодо маніпуляцій, оскільки деякі операції, як от заміна мастила у двигуні, потребують доступу до нижньої частини апарату. У цьому проекті були використані наступні програми: • Python 3.7 + PyCharm IDE • CoppeliaSim Edu • DS Catia V5 Далі був розглянутий тех. процес для створення монтажної пластини робота – частина маніпулятора, до якої кріпиться корисна оснастка, наприклад хват, зварювальний апарат тощо. Була розроблена послідовність обробки, враховуючи параметри інструменту. Підведені підсумки щодо тривалості та вартості виробнитства такої деталі. Наприкінці техніка безпеки і розрахунок необхідних умов у робочому приміщенні.In this paper, the author considered the possibilities of the manipulator on the mobile platform Kuka YouBot for use in laboratories or workshops. Due to the use of a mobile platform, the work area of such manipulator is significantly increased. For such a platform, a software solution was developed that takes the current and desired position of the object in space at the input, and at the output produces the necessary angles of rotation for each moment of time, which are then transmitted to the controller type Feedforward + PI Feedback, which settings were also considered . Based on the obtained values, a simulation was performed in the CoppeliaSim EDU environment, which demonstrates all the above advantages. In addition to the robot control program, a supplementary hydraulic system was proposed, and hydraulic cylinders were designed to lock and move the object being manipulated by the robot. This hydraulic system allows you to properly secure an object, such as a motorcycle, and then use a large hydraulic cylinder to lift it up to increase handling, as some operations, such as changing the engine oil, which require access to the bottom part of the unit. The following software were used in this project: • Python 3.7 + PyCharm IDE • CoppeliaSim Edu • DS Catia V5 Next was considered machining process for creating a mounting plate of the robot - a part of the manipulator to which useful equipment is attached, such as a grip, a welding machine, etc. A machining sequence was developed, considering the parameters of the tool. Summarized the duration and cost of production of such part. Finally, safety, precautions and necessary conditions at the workplace

    Управление манипулятором подводного робота

    Get PDF
    This paper deals with the problem of bringing the end effector (grip center) of an underwater vehicle anthropomorphic manipulator to a predetermined position in a given time using the terminal state method. A dynamic model with the account of joint drives dynamics is formulated on the basis of obtained kinematic model constructed by using the Denavit-Hartenberg method (DH model). The DH model is used in a terminal nonlinear criterion that displays estimate of the proximity of the effector's orientation and position to the specified values. The dynamic model is adapted for effective application of the author's terminal state method (TSM) so that it forms a system of differential equations for the rotation angles of manipulator links around the longitudinal and transverse axes, having only desired TSM-controls in the right parts. The converted model provides simplifications of controls calculation by eliminating the numerical solution of special differential equations, that is needed in the case of using in TSM nonlinear dynamic models in general form. The found TSM-controls are further used in expressions for control actions on joints electric drives obtained on the basis of electric drives dynamic models. Unknown drives parameters as functions of links rotation angles or other unknown factors, are proposed to be determined experimentally. Such two-step procedure allowed to get drive control in the form of algebraic and transcendental expressions. Finally, by applying the developed software, simulation results of the manipulator end effector moving to the specified positions on the edge of the working area are presented. The resulting error (without accounting measurement error) does not exceed 2 centimeters at the 1.2 meters distance by arm reaching maximum of length ability. The work was performed under the Federal program of developing a robotic device for underwater research in shallow depths (up to 10 meters).Рассматривается задача приведения конечного эффектора (центра схвата) антропоморфного манипулятора подводного аппарата в заданное положение за заданное время с помощью метода конечного состояния. На основе полученной кинематической модели антропоморфного манипулятора, построенной на основе подхода Денавита – Хартенберга (DH-модель), сформулирована динамическая модель, учитывающая динамику приводов сочленений. DH-модель использована в терминальном нелинейном критерии, отображающем близость ориентации и положения эффектора к заданным значениям. Динамическая модель приспособлена для эффективного применения авторского метода конечного состояния (МКС) и представляет собой систему дифференциальных уравнений для углов поворота звеньев манипулятора вокруг продольных и поперечных осей, правые части которой содержат только искомые МКС-управления. Такая модель позволила существенно упростить расчет управлений за счет упразднения численного решения дифференциальных уравнений специального вида, необходимых в случае использования в МКС нелинейных динамических моделей общего вида. Найденные МКС-управления далее использованы в выражениях для управляющих воздействий на электроприводы сочленений, полученных на основе динамических моделей электроприводов. Предполагается, что неизвестные параметры приводов, как функции углов поворота звеньев и других неизвестных факторов, могут быть определены экспериментально. Такая двухэтапная процедура позволила получить управление приводами в форме алгебраических и трансцендентных выражений. Наконец, представлены результаты моделирования процессов приведения конечного эффектора манипулятора в заданные положения на границах рабочей области с помощью разработанного программного обеспечения. Полученная при этом погрешность без учета погрешности измерений составила величины, не превышающие двух сантиметров на максимальном вылете руки длиной 1,2 метра. Работа выполнена в рамках федеральной целевой программы по разработке роботизированного аппарата, предназначенного для подводных исследовательских работ на малых глубинах (до 10 метров)
    corecore