444 research outputs found

    Footstep and Motion Planning in Semi-unstructured Environments Using Randomized Possibility Graphs

    Get PDF
    Traversing environments with arbitrary obstacles poses significant challenges for bipedal robots. In some cases, whole body motions may be necessary to maneuver around an obstacle, but most existing footstep planners can only select from a discrete set of predetermined footstep actions; they are unable to utilize the continuum of whole body motion that is truly available to the robot platform. Existing motion planners that can utilize whole body motion tend to struggle with the complexity of large-scale problems. We introduce a planning method, called the "Randomized Possibility Graph", which uses high-level approximations of constraint manifolds to rapidly explore the "possibility" of actions, thereby allowing lower-level motion planners to be utilized more efficiently. We demonstrate simulations of the method working in a variety of semi-unstructured environments. In this context, "semi-unstructured" means the walkable terrain is flat and even, but there are arbitrary 3D obstacles throughout the environment which may need to be stepped over or maneuvered around using whole body motions.Comment: Accepted by IEEE International Conference on Robotics and Automation 201

    Deploying the NASA Valkyrie Humanoid for IED Response: An Initial Approach and Evaluation Summary

    Full text link
    As part of a feasibility study, this paper shows the NASA Valkyrie humanoid robot performing an end-to-end improvised explosive device (IED) response task. To demonstrate and evaluate robot capabilities, sub-tasks highlight different locomotion, manipulation, and perception requirements: traversing uneven terrain, passing through a narrow passageway, opening a car door, retrieving a suspected IED, and securing the IED in a total containment vessel (TCV). For each sub-task, a description of the technical approach and the hidden challenges that were overcome during development are presented. The discussion of results, which explicitly includes existing limitations, is aimed at motivating continued research and development to enable practical deployment of humanoid robots for IED response. For instance, the data shows that operator pauses contribute to 50\% of the total completion time, which implies that further work is needed on user interfaces for increasing task completion efficiency.Comment: 2019 IEEE-RAS International Conference on Humanoid Robot

    ๊ธฐ๊ตฌํ•™์  ๋ฐ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•œ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ž‘์—… ์ค‘์‹ฌ ์ „์‹  ๋™์ž‘ ์ƒ์„ฑ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2023. 2. ๋ฐ•์žฌํฅ.๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์— ์žฅ์ฐฉ๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์ž…๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๊ณ ์ •ํ˜• ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์— ๋น„ํ•ด ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ด๋™์„ฑ์„ ์ œ๊ณต๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•˜๊ณ  ๋ณต์žกํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‘ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ „์‹ ์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•  ๋•Œ ์—ฌ๋Ÿฌ ํŠน์ง•์„ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์€ ์—ฌ์ž์œ ๋„, ๋‘ ์‹œ์Šคํ…œ์˜ ๊ด€์„ฑ ์ฐจ์ด ๋ฐ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋น„ํ™€๋กœ๋…ธ๋ฏน ์ œํ•œ ์กฐ๊ฑด ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ๊ธฐ๊ตฌํ•™์  ๋ฐ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ „์‹  ๋™์ž‘ ์ƒ์„ฑ ์ „๋žต์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋จผ์ €, ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ์ดˆ๊ธฐ ์œ„์น˜์—์„œ ๋ฌธ์„ ํ†ต๊ณผํ•˜์—ฌ ๋ชฉํ‘œ ์œ„์น˜์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•œ ์ „์‹  ๊ฒฝ๋กœ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋กœ๋ด‡๊ณผ ๋ฌธ์— ์˜ํ•ด ์ƒ๊ธฐ๋Š” ๊ธฐ๊ตฌํ•™์  ์ œํ•œ์กฐ๊ฑด์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‘ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ ์ „์‹ ์˜ ๊ฒฝ๋กœ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ž์„ธ ๊ฒฝ๋กœ์™€ ๋ฌธ์˜ ๊ฐ๋„ ๊ฒฝ๋กœ๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰์—์„œ area indicator๋ผ๋Š” ์ •์ˆ˜ ๋ณ€์ˆ˜๋ฅผ ์ƒํƒœ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋กœ์„œ ์ •์˜ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋ฌธ์— ๋Œ€ํ•œ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ƒ๋Œ€์  ์œ„์น˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๊ฒฝ๋กœ์™€ ๋ฌธ์˜ ๊ฐ๋„๋ฅผ ํ†ตํ•ด ๋ฌธ์˜ ์†์žก์ด ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์—ญ๊ธฐ๊ตฌํ•™์„ ํ™œ์šฉํ•˜์—ฌ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๊ด€์ ˆ ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํšจ์œจ์„ฑ์€ ๋น„ํ™€๋กœ๋…ธ๋ฏน ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‘˜ ์งธ, ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์ „์‹  ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋“ฑ์‹ ๋ฐ ๋ถ€๋“ฑ์‹ ์ œํ•œ์กฐ๊ฑด ๋ชจ๋‘์— ๋Œ€ํ•ด ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ๋ฐ˜์˜ํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋˜๋Š” ํœด๋จธ๋…ธ์ด๋“œ์™€ ๊ฐ™์ด ์ž์œ ๋„๊ฐ€ ๋งŽ์€ ๋กœ๋ด‡์˜ ์—ฌ์ž์œ ๋„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋˜์–ด ์ž‘์—… ์šฐ์„  ์ˆœ์œ„์— ๋”ฐ๋ผ ๊ฐ€์ค‘์น˜๊ฐ€ ๋‹ค๋ฅธ ๊ด€์ ˆ ๋™์ž‘์œผ๋กœ ์—ฌ๋Ÿฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ์ตœ์ ํ™” ๋ฌธ์ œ์˜ 1์ฐจ ์ตœ์  ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋„๋ก ํ•˜๋ฉฐ, Active-set ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋“ฑ์‹ ๋ฐ ๋ถ€๋“ฑ์‹ ์ž‘์—…์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋Œ€์นญ์ ์ธ ์˜๊ณต๊ฐ„ ์‚ฌ์˜ ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์ƒ ํšจ์œจ์ ์ž…๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋กœ๋ด‡์€ ์šฐ์„  ์ˆœ์œ„์— ๋”ฐ๋ผ ๊ฐœ๋ณ„์ ์ธ ๊ด€์ ˆ ๊ฐ€์ค‘์น˜๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์ „์‹  ์›€์ง์ž„์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ์˜ ํšจ์šฉ์„ฑ์€ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ํœด๋จธ๋…ธ์ด๋“œ๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค ์ค‘ ํ•˜๋‚˜๋กœ์„œ ์ž๊ฐ€ ์ถฉ๋Œ ํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ๊ฐ„์˜ ์ž๊ฐ€ ์ถฉ๋Œ์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋ฒ„ํผ ์˜์—ญ์„ ๋‘˜๋Ÿฌ์‹ธ๋Š” 3์ฐจ์› ๊ณก๋ฉด์ธ distance buffer border์˜ ๊ฐœ๋…์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ๋ฒ„ํผ ์˜์—ญ์˜ ๋‘๊ป˜๋Š” ๋ฒ„ํผ ๊ฑฐ๋ฆฌ์ž…๋‹ˆ๋‹ค. ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฒ„ํผ ๊ฑฐ๋ฆฌ๋ณด๋‹ค ์ž‘์€ ๊ฒฝ์šฐ, ์ฆ‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋ฒ„ํผ ์˜์—ญ ๋‚ด๋ถ€์— ์žˆ๋Š” ๊ฒฝ์šฐ ์ œ์•ˆ๋œ ์ „๋žต์€ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ๋ฒ„ํผ ์˜์—ญ ๋ฐ–์œผ๋กœ ๋‚ด๋ณด๋‚ด๊ธฐ ์œ„ํ•ด ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์›€์ง์ž„์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์›€์ง์ž„์„ ์ˆ˜์ •ํ•˜์ง€ ์•Š๊ณ ๋„ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡๊ณผ์˜ ์ž๊ฐ€ ์ถฉ๋Œ์„ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์›€์ง์ž„์€ ๊ฐ€์ƒ์˜ ํž˜์„ ๊ฐ€ํ•จ์œผ๋กœ์จ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ํž˜์˜ ๋ฐฉํ–ฅ์€ ์ฐจ๋™ ๊ตฌ๋™ ์ด๋™ ๋กœ๋ด‡์˜ ๋น„ํ™€๋กœ๋…ธ๋ฏน ์ œ์•ฝ ๋ฐ ์กฐ์ž‘๊ธฐ์˜ ๋„๋‹ฌ ๊ฐ€๋Šฅ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 7์ž์œ ๋„ ๋กœ๋ด‡ํŒ”์„ ๊ฐ€์ง„ ์ฐจ๋™ ๊ตฌ๋™ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์— ์ ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‹คํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์ž…์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.A mobile manipulator is a manipulator mounted on a mobile robot. Compared to a fixed-base manipulator, the mobile manipulator can perform various and complex tasks because the mobility is offered by the mobile robot. However, combining two different systems causes several features to be considered when generating the whole-body motion of the mobile manipulator. The features include redundancy, inertia difference, and non-holonomic constraint. The purpose of this thesis is to propose the whole-body motion generation strategy of the mobile manipulator for considering kinematic and dynamic constraints. First, a planning framework is proposed that computes a path for the whole-body configuration of the mobile manipulator to navigate from the initial position, traverse through the door, and arrive at the target position. The framework handles the kinematic constraint imposed by the closed-chain between the robot and door. The proposed framework obtains the path of the whole-body configuration in two steps. First, the path for the pose of the mobile robot and the path for the door angle are computed by using the graph search algorithm. In graph search, an integer variable called area indicator is introduced as an element of state, which indicates where the robot is located relative to the door. Especially, the area indicator expresses a process of door traversal. In the second step, the configuration of the manipulator is computed by the inverse kinematics (IK) solver from the path of the mobile robot and door angle. The proposed framework has a distinct advantage over the existing methods that manually determine several parameters such as which direction to approach the door and the angle of the door required for passage. The effectiveness of the proposed framework was validated through experiments with a nonholonomic mobile manipulator. Second, a whole-body controller is presented based on the optimization method that can consider both equality and inequality constraints. The method computes the optimal solution of the weighted hierarchical optimization problem. The method is developed to resolve the redundancy of robots with a large number of Degrees of Freedom (DOFs), such as a mobile manipulator or a humanoid, so that they can execute multiple tasks with differently weighted joint motion for each task priority. The proposed method incorporates the weighting matrix into the first-order optimality condition of the optimization problem and leverages an active-set method to handle equality and inequality constraints. In addition, it is computationally efficient because the solution is calculated in a weighted joint space with symmetric null-space projection matrices for propagating recursively to a low priority task. Consequently, robots that utilize the proposed controller effectively show whole-body motions handling prioritized tasks with differently weighted joint spaces. The effectiveness of the proposed controller was validated through experiments with a nonholonomic mobile manipulator as well as a humanoid. Lastly, as one of dynamic constraints for the mobile manipulator, a reactive self-collision avoidance algorithm is developed. The proposed method mainly focuses on self-collision between a manipulator and the mobile robot. We introduce the concept of a distance buffer border (DBB), which is a 3D curved surface enclosing a buffer region of the mobile robot. The region has the thickness equal to buffer distance. When the distance between the manipulator and mobile robot is less than the buffer distance, i.e. the manipulator lies inside the buffer region of the mobile robot, the proposed strategy is to move the mobile robot away from the manipulator in order for the manipulator to be placed outside the border of the region, the DBB. The strategy is achieved by exerting force on the mobile robot. Therefore, the manipulator can avoid self-collision with the mobile robot without modifying the predefined motion of the manipulator in a world Cartesian coordinate frame. In particular, the direction of the force is determined by considering the non-holonomic constraint of the differentially driven mobile robot. Additionally, the reachability of the manipulator is considered to arrive at a configuration in which the manipulator can be more maneuverable. To realize the desired force and resulting torque, an avoidance task is constructed by converting them into the accelerations of the mobile robot and smoothly inserted with a top priority into the controller. The proposed algorithm was implemented on a differentially driven mobile robot with a 7-DOFs robotic arm and its performance was demonstrated in various experimental scenarios.1 INTRODUCTION 1 1.1 Motivation 1 1.2 Contributions of thesis 2 1.3 Overview of thesis 3 2 WHOLE-BODY MOTION PLANNER : APPLICATION TO NAVIGATION INCLUDING DOOR TRAVERSAL 5 2.1 Background & related works 7 2.2 Proposed framework 9 2.2.1 Computing path for mobile robot and door angle - S1 10 2.2.1.1 State 10 2.2.1.2 Action 13 2.2.1.3 Cost 15 2.2.1.4 Search 18 2.2.2 Computing path for arm configuration - S2 20 2.3 Results 21 2.3.1 Application to pull and push-type door 21 2.3.2 Experiment in cluttered environment 22 2.3.3 Experiment with different robot platform 23 2.3.4 Comparison with separate planning by existing works 24 2.3.5 Experiment with real robot 29 2.4 Conclusion 29 3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHICAL QUADRATIC PROGRAMMING 31 3.1 Related works 32 3.2 Problem statement 34 3.2.1 Pseudo-inverse with weighted least-squares norm for each task 35 3.2.2 Problem statement 37 3.3 WHQP with equality constraints 37 3.4 WHQP with inequality constraints 45 3.5 Experimental results 48 3.5.1 Simulation experiment with nonholonomic mobile manipulator 48 3.5.1.1 Scenario description 48 3.5.1.2 Task and weighting matrix description 49 3.5.1.3 Results 51 3.5.2 Real experiment with nonholonomic mobile manipulator 53 3.5.2.1 Scenario description 53 3.5.2.2 Task and weighting matrix description 53 3.5.2.3 Results 54 3.5.3 Real experiment with humanoid 55 3.5.3.1 Scenario description 55 3.5.3.2 Task and weighting matrix description 55 3.5.3.3 Results 57 3.6 Discussions and implementation details 57 3.6.1 Computation cost 57 3.6.2 Composite weighting matrix in same hierarchy 59 3.6.3 Nullity of WHQP 59 3.7 Conclusion 59 4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOIDANCE 61 4.1 Background & related Works 64 4.2 Distance buffer border and its score computation 65 4.2.1 Identification of potentially colliding link pairs 66 4.2.2 Distance buffer border 67 4.2.3 Evaluation of distance buffer border 69 4.2.3.1 Singularity of the differentially driven mobile robot 69 4.2.3.2 Reachability of the manipulator 72 4.2.3.3 Score of the DBB 74 4.3 Self-collision avoidance algorithm 75 4.3.1 Generation of the acceleration for the mobile robot 76 4.3.2 Generation of the repulsive acceleration for the other link pair 82 4.3.3 Construction of an acceleration-based task for self-collision avoidance 83 4.3.4 Insertion of the task in HQP-based controller 83 4.4 Experimental results 86 4.4.1 System overview 87 4.4.2 Experimental results 87 4.4.2.1 Self-collision avoidance while tracking the predefined trajectory 87 4.4.2.2 Self-collision avoidance while manually guiding the end-effector 89 4.4.2.3 Extension to obstacle avoidance when opening the refrigerator 91 4.4.3 Discussion 94 4.5 Conclusion 95 5 CONCLUSIONS 97 Abstract (In Korean) 113 Acknowlegement 116๋ฐ•

    Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies

    Get PDF
    When operating in human environments, a robot should use predictable motions that allow humans to trust and anticipate its behavior. Heuristic search-based planning offers predictable motions and guarantees on completeness and sub-optimality of solutions. While search-based planning on motion primitive-based (lattice-based) graphs has been used extensively in navigation, application to high-dimensional state-spaces has, until recently, been thought impractical. This dissertation presents methods we have developed for applying these graphs to mobile manipulation, specifically for systems which contain closed chains. The formation of closed chains in tasks that involve contacts with the environment may reduce the number of available degrees-of-freedom but adds complexity in terms of constraints in the high-dimensional state-space. We exploit the dimensionality reduction inherent in closed kinematic chains to get efficient search-based planning. Our planner handles changing topologies (switching between open and closed-chains) in a single plan, including what transitions to include and when to include them. Thus, we can leverage existing results for search-based planning for open chains, combining open and closed chain manipulation planning into one framework. Proofs regarding the framework are introduced for the application to graph-search and its theoretical guarantees of optimality. The dimensionality-reduction is done in a manner that enables finding optimal solutions to low-dimensional problems which map to correspondingly optimal full-dimensional solutions. We apply this framework to planning for opening and navigating through non-spring and spring-loaded doors using a Willow Garage PR2. The framework motivates our approaches to the Atlas humanoid robot from Boston Dynamics for both stationary manipulation and quasi-static walking, as a closed chain is formed when both feet are on the ground

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Hierarchical generative modelling for autonomous robots

    Full text link
    Humans can produce complex whole-body motions when interacting with their surroundings, by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control in the setting of autonomous robotic operations. We approach this problem by hierarchical generative modelling equipped with multi-level planning-for autonomous task completion-that mimics the deep temporal architecture of human motor control. Here, temporal depth refers to the nested time scales at which successive levels of a forward or generative model unfold, for example, delivering an object requires a global plan to contextualise the fast coordination of multiple local movements of limbs. This separation of temporal scales also motivates robotics and control. Specifically, to achieve versatile sensorimotor control, it is advantageous to hierarchically structure the planning and low-level motor control of individual limbs. We use numerical and physical simulation to conduct experiments and to establish the efficacy of this formulation. Using a hierarchical generative model, we show how a humanoid robot can autonomously complete a complex task that necessitates a holistic use of locomotion, manipulation, and grasping. Specifically, we demonstrate the ability of a humanoid robot that can retrieve and transport a box, open and walk through a door to reach the destination, approach and kick a football, while showing robust performance in presence of body damage and ground irregularities. Our findings demonstrated the effectiveness of using human-inspired motor control algorithms, and our method provides a viable hierarchical architecture for the autonomous completion of challenging goal-directed tasks

    How to Deploy a Wire with a Robotic Platform: Learning from Human Visual Demonstrations

    Get PDF
    In this paper, we address the problem of deploying a wire along a specific path selected by an unskilled user. The robot has to learn the selected path and pass a wire through the peg table by using the same tool. The main contribution regards the hybrid use of Cartesian positions provided by a learning procedure and joint positions obtained by inverse kinematics and motion planning. Some constraints are introduced to deal with non-rigid material without breaks or knots. We took into account a series of metrics to evaluate the robot learning capabilities, all of them over performed the targets

    An Architecture for Online Affordance-based Perception and Whole-body Planning

    Get PDF
    The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demonstration of dexterous mobile robots executing a variety of tasks aided by a remote human operator using only data from the robot's sensor suite transmitted over a constrained, field-realistic communications link. We describe the design considerations, architecture, implementation and performance of the software that Team MIT developed to command and control an Atlas humanoid robot. Our design emphasized human interaction with an efficient motion planner, where operators expressed desired robot actions in terms of affordances fit using perception and manipulated in a custom user interface. We highlight several important lessons we learned while developing our system on a highly compressed schedule

    Negotiating Large Obstacles with a Humanoid Robot via Multi-Contact Motion Planning

    Get PDF
    Incremental progress in humanoid robot locomotion over the years has achieved essential capabilities such as navigation over at or uneven terrain, stepping over small obstacles and imbing stairls. However, the locomotion research has mostly been limited to using only bipedal gait and only foot contacts with the environment, using the upper body for balancing without considering additional external contacts. As a result, challenging locomotion tasks like climbing over large obstacles relative to the size of the robot have remained unsolved. In this paper, we address this class of open problems with an approach based on multi-contact motion planning, guided by physical human demonstrations. Our goal is to make humanoid locomotion problem more tractable by taking advantage of objects in the surrounding environment instead of avoiding them. We propose a multi-contact motion planning algorithm for humanoid robot locomotion which exploits the multi-contacts at the upper and lower body limbs. We propose a contact stability measure, which simplies the contact search from demonstration and contact transition motion generation for the multi-contact motion planning algorithm. The algorithm uses the whole-body motions generated via Quadratic Programming (QP) based solver methods. The multi-contact motion planning algorithm is applied for a challenging task of climbing over a relatively larger obstacle compared to the robot. We validate our planning approach with simulations and experiments for climbing over a large wooden obstacle with COMAN, which is a complaint humanoid robot with 23 degrees of freedom (DOF). We also propose a generalization method, the \Policy-Contraction Learning Method" to extend the algorithm for generating new multi-contact plans for our multi-contact motion planner, that can adapt to changes in the environment. The method learns a general policy and the multi-contact behavior from the human demonstrations, for generating new multi-contact plans for the obstacle-negotiation

    A framework for compliant physical interaction : the grasp meets the task

    Get PDF
    Although the grasp-task interplay in our daily life is unquestionable, very little research has addressed this problem in robotics. In order to fill the gap between the grasp and the task, we adopt the most successful approaches to grasp and task specification, and extend them with additional elements that allow to define a grasp-task link. We propose a global sensor-based framework for the specification and robust control of physical interaction tasks, where the grasp and the task are jointly considered on the basis of the task frame formalism and the knowledge-based approach to grasping. A physical interaction task planner is also presented, based on the new concept of task-oriented hand pre-shapes. The planner focuses on manipulation of articulated parts in home environments, and is able to specify automatically all the elements of a physical interaction task required by the proposed framework. Finally, several applications are described, showing the versatility of the proposed approach, and its suitability for the fast implementation of robust physical interaction tasks in very different robotic systems
    • โ€ฆ
    corecore