6,600 research outputs found

    Local Alignment of the BABAR Silicon Vertex Tracking Detector

    Full text link
    The BABAR Silicon Vertex Tracker (SVT) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e+e- collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance, and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 SVT wafers. This procedure uses a tuned mix of in-situ experimental data and complementary lab-bench measurements to control systematic distortions. Wafer positions and orientations are determined by minimizing a chisquared computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual mis-alignments on relevant physical variables is evaluated in special control samples. The BABAR data-sample collected between November 1999 and April 2008 is used in the study of the SVT stability.Comment: 21 pages, 20 figures, 3 tables, submitted to Nucl. Instrum. Meth.

    Oceanic rings and jets as statistical equilibrium states

    Get PDF
    Equilibrium statistical mechanics of two-dimensional flows provides an explanation and a prediction for the self-organization of large scale coherent structures. This theory is applied in this paper to the description of oceanic rings and jets, in the framework of a 1.5 layer quasi-geostrophic model. The theory predicts the spontaneous formation of regions where the potential vorticity is homogenized, with strong and localized jets at their interface. Mesoscale rings are shown to be close to a statistical equilibrium: the theory accounts for their shape, their drift, and their ubiquity in the ocean, independently of the underlying generation mechanism. At basin scale, inertial states presenting mid basin eastward jets (and then different from the classical Fofonoff solution) are described as marginally unstable states. These states are shown to be marginally unstable for the equilibrium statistical theory. In that case, considering a purely inertial limit is a first step toward more comprehensive out of equilibrium studies that would take into account other essential aspects, such as wind forcing.Comment: 15 pages, submitted to Journal of Physical Oceanograph

    Iso-level tool path planning for free-form surfaces

    Get PDF
    The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show effectiveness of the proposed methods

    A New Path Planning Guidance Law For Improved Impact Time Control of Missiles and Precision Munitions

    Get PDF
    A new missile guidance law is proposed for the control of impact time which provides an improved time-to-go calculation by removing error due to trajectory curvature and also provides a family of trajectories for trajectory planning purposes. Unlike conventional optimal guidance laws, the proposed law is non explicit in time-to-go and the linearization of the engagement kinematics in order to gain a closed form solution is not necessary
    • …
    corecore