97 research outputs found

    Aggressive landing maneuvers for UAVs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.Includes bibliographical references (p. 69-70).VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of unmanned aircraft systems at all attitudes, including against walls and ceilings as a way to considerably enhance the operational capability of these vehicles. The features of the research include a novel approach to trajectory tracking, whereby the primary system outputs to be tracked are smoothly scheduled according to the state of the vehicle relative to its landing area. The proposed approach is illustrated with several experiments using a low-cost three-degree-of-freedom helicopter. We also include the design details of a testbed for the demonstration of the application of our research endeavor. The testbed is a model helicopter UAV platform that has indoor and outdoor aggressive flight capability.by Selcuk Bayraktar.S.M

    Design and Experimental Verification of Robust Motion Synchronization Control with Integral Action

    Get PDF
    A robust attitude motion synchronization problem is investigated for multiple 3-degrees-of-freedom (3-DOF) helicopters with input disturbances. The communication topology among the helicopters is modeled by a directed graph, and each helicopter can only access the angular position measurements of itself and its neighbors. The desired trajectories are generated online and not accessible to all helicopters. The problem is solved by embedding in each helicopter some finite-time convergent (FTC) estimators and a distributed controller with integral action. The FTC estimators generate the estimates of desired angular acceleration and the derivative of the local neighborhood synchronization errors. The distributed controller stabilizes the tracking errors and attenuates the effects of input disturbances. The conditions under which the tracking error of each helicopter converges asymptotically to zero are identified, and, for the cases with nonzero tracking errors, some inequalities are derived to show the relationship between the ultimate bounds of tracking errors and the design parameters. Simulation and experimental results are presented to demonstrate the performance of the controllers

    Model predictive control with application to real-time hardware and guided parafoil

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.Includes bibliographical references (p. 169-170).Model Predictive Control (MPC) is a control strategy that is suitable for optimizing the performance of constrained systems. Constraints are present in all control systems due to the physical and environmental limits on plant operation. Through a systematical handling of constraints, MPC can improve the performance of a system by allowing it to safely operate near constraint boundaries. This thesis describes the mathematical background of MPC and develops two controllers. One controller is based on a linear model of the plant and is successfully applied to a real-time 3 degrees-of-freedom helicopter system, used to simulate helicopter-like motions in a laboratory setting. This system has a number of significant state and control constraints. The second controller uses a nonlinear model and is applied to a guided parafoil to identify the advantage of using a Doppler wind sensor. A method for reducing the computational load is also introduced that is applicable to both controllers.by Abran Alaniz.S.M

    Entry, Descent, and Landing Operations Analysis for the Genesis Entry Capsule

    Get PDF
    On September 8, 2004, the Genesis spacecraft returned to Earth after spending 29 months about the sun-Earth libration point (L1) collecting solar wind particles. Four hours prior to Earth arrival, the sample return capsule containing the samples was released for entry and subsequent landing at the Utah Test and Training Range. This paper provides an overview of the entry, descent, and landing trajectory analysis that was performed during the mission operations phase leading up to final approach to Earth. The final orbit determination solution produced an inertial entry flight-path angle of -8.002 deg (which was the desired nominal value) with a 3-sigma error of +/-0.0274 deg (a third of the requirement). The operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.3 km from the target, and was well within the allowable landing area. Overall, the Earth approach operation procedures worked well and there were no issues (logistically or performance based) that arose. As a result, the process of targeting a capsule from deep space and accurately landing it on Earth was successfully demonstrated

    Adaptive control of nonlinear system based on QFT application to 3-DOF flight control system

    Get PDF
    Research on unmanned aerial vehicle (UAV) became popular because of remote flight access and cost-effective solution. 3-degree of freedom (3-DOF) unmanned helicopters is one of the popular research UAV, because of its high load carrying capacity with a smaller number of motor and requirement of forethought motor control dynamics. Various control algorithms are investigated and designed for the motion control of the 3DOF helicopter. Three-degree-of-freedom helicopter model configuration presents the same advantages of 3-DOF helicopters along with increased payload capacity, increase stability in hover, manoeuvrability and reduced mechanical complexity. Numerous research institutes have chosen the three-degree-of-freedom as an ideal platform to develop intelligent controllers. In this research paper, we discussed about a hybrid controller that combined with Adaptive and Quantitative Feedback theory (QFT) controller for the 3-DOF helicopter model. Though research on Adaptive and QFT controller are not a new subject, the first successful single Adaptive aircraft flight control systems have been designed for the U.S. Air Force in Wright Laboratories unmanned research vehicle, Lambda [1]. Previously researcher focused on structured uncertainties associated with controller for the flight conditions theoretically. The development of simulationbased design on flight control system response, opened a new dimension for researcher to design physical flight controller for plant parameter uncertainties. At the beginning, our research was to investigates the possibility of developing the QFT combined with Adaptive controller to control a single pitch angle that meets flying quality conditions of automatic flight control. Finally, we successfully designed the hybrid controller that is QFT based adaptive controller for all the three angles

    Prescribed Performance Adaptive Fixed-Time Attitude Tracking Control of a 3-DOF Helicopter with Small Overshoot

    Full text link
    In this article, a novel prescribed performance adaptive fixed-time backstepping control strategy is investigated for the attitude tracking of a 3-DOF helicopter. First, a new unified barrier function (UBF) is designed to convert the prescribed performance constrained system into an unconstrained one. Then, a fixed-time (FxT) backstepping control framework is established to achieve the attitude tracking. By virtual of a newly proposed inequality, a non-singular virtual control law is constructed. In addition, a FxT differentiator with a compensation mechanism is employed to overcome the matter of "explosion of complexity". Moreover, a modified adaptive law is developed to approximate the upper bound of the disturbances. To obtain a less conservative and more accurate approximation of the settling time, an improved FxT stability theorem is proposed. Based on this theorem, it is proved that all signals of the system are FxT bounded, and the tracking error converges to a preset domain with small overshoot in a user-defined time. Finally, the feasibility and effectiveness of the presented control strategy are confirmed by numerical simulations.Comment: 6 pages, 4 figure

    Control primitives for fast helicopter maneuvers

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 77-82).In this paper, we introduce a framework for learning aggressive maneuvers using dynamic movement primitives (DMP) for helicopters. Our ultimate goal is to combine these DMPs to generate new primitives and demonstrate them on a 3-DOF (3 Degrees of Freedom) helicopter. An observed movement is approximated and regenerated using DMP methods. After learning the movement primitives, the partial contraction theory is used to combine them. We imitate the aggressive maneuvers that are performed by a human and use these primitives to achieve new maneuvers that can fly over an obstacle. Experiments on the Quanser 3-DOF Helicopter demonstrate the effectiveness of our proposed method. In addition, we linearly combine DMPs and propose a new type of DMP. We also analyze Matsuoka's oscillator and Hopf oscillator using contraction theory.by Barฤฑแนฃ Eren Perk.S.M

    Adaptive control of nonlinear system based on QFT application to 3-DOF flight control system

    Get PDF
    Research on unmanned aerial vehicle (UAV) became popular because of remote flight access and cost-effective solution. 3-degree of freedom (3-DOF) unmanned helicopters is one of the popular research UAV, because of its high load carrying capacity with a smaller number of motor and requirement of forethought motor control dynamics. Various control algorithms are investigated and designed for the motion control of the 3DOF helicopter. Three-degree-of-freedom helicopter model configuration presents the same advantages of 3-DOF helicopters along with increased payload capacity, increase stability in hover, manoeuvrability and reduced mechanical complexity. Numerous research institutes have chosen the three-degree-of-freedom as an ideal platform to develop intelligent controllers. In this research paper, we discussed about a hybrid controller that combined with Adaptive and Quantitative Feedback theory (QFT) controller for the 3-DOF helicopter model. Though research on Adaptive and QFT controller are not a new subject, the first successful single Adaptive aircraft flight control systems have been designed for the U.S. Air Force in Wright Laboratories unmanned research vehicle, Lambda [1]. Previously researcher focused on structured uncertainties associated with controller for the flight conditions theoretically. The development of simulationbased design on flight control system response, opened a new dimension for researcher to design physical flight controller for plant parameter uncertainties. At the beginning, our research was to investigates the possibility of developing the QFT combined with Adaptive controller to control a single pitch angle that meets flying quality conditions of automatic flight control. Finally, we successfully designed the hybrid controller that is QFT based adaptive controller for all the three angles

    Adaptive Neural Fault-Tolerant Control of a 3-DOF Model Helicopter System

    Full text link

    Visual Tracking Nonlinear Model Predictive Control Method for Autonomous Wind Turbine Inspection

    Full text link
    Automated visual inspection of on-and offshore wind turbines using aerial robots provides several benefits, namely, a safe working environment by circumventing the need for workers to be suspended high above the ground, reduced inspection time, preventive maintenance, and access to hard-to-reach areas. A novel nonlinear model predictive control (NMPC) framework alongside a global wind turbine path planner is proposed to achieve distance-optimal coverage for wind turbine inspection. Unlike traditional MPC formulations, visual tracking NMPC (VT-NMPC) is designed to track an inspection surface, instead of a position and heading trajectory, thereby circumventing the need to provide an accurate predefined trajectory for the drone. An additional capability of the proposed VT-NMPC method is that by incorporating inspection requirements as visual tracking costs to minimize, it naturally achieves the inspection task successfully while respecting the physical constraints of the drone. Multiple simulation runs and real-world tests demonstrate the efficiency and efficacy of the proposed automated inspection framework, which outperforms the traditional MPC designs, by providing full coverage of the target wind turbine blades as well as its robustness to changing wind conditions. The implementation codes are open-sourced.Comment: 8 pages, accepted for publication at ICAR conferenc
    • โ€ฆ
    corecore