147 research outputs found

    Knowledge Transfer Between Robots with Similar Dynamics for High-Accuracy Impromptu Trajectory Tracking

    Full text link
    In this paper, we propose an online learning approach that enables the inverse dynamics model learned for a source robot to be transferred to a target robot (e.g., from one quadrotor to another quadrotor with different mass or aerodynamic properties). The goal is to leverage knowledge from the source robot such that the target robot achieves high-accuracy trajectory tracking on arbitrary trajectories from the first attempt with minimal data recollection and training. Most existing approaches for multi-robot knowledge transfer are based on post-analysis of datasets collected from both robots. In this work, we study the feasibility of impromptu transfer of models across robots by learning an error prediction module online. In particular, we analytically derive the form of the mapping to be learned by the online module for exact tracking, propose an approach for characterizing similarity between robots, and use these results to analyze the stability of the overall system. The proposed approach is illustrated in simulation and verified experimentally on two different quadrotors performing impromptu trajectory tracking tasks, where the quadrotors are required to accurately track arbitrary hand-drawn trajectories from the first attempt.Comment: European Control Conference (ECC) 201

    Agile load transportation systems using aerial robots

    Get PDF
    In this dissertation, we address problems that can occur during load transport using aerial robots, i.e., small scale quadrotors. First, detailed models of such transportation system are derived. These models include nonlinear models of a quadrotor, a model of a quadrotor carrying a fixed load and a model of a quadrotor carrying a suspended load. Second, the problem of quadrotor stabilization and trajectory tracking with changes of the center of gravity of the transportation system is addressed. This problem is solved using model reference adaptive control based on output feedback linearization that compensates for dynamical changes in the center of gravity of the quadrotor. The third problem we address is a problem of a swing-free transport of suspended load using quadrotors. Flying with a suspended load can be a very challenging and sometimes hazardous task as the suspended load significantly alters the flight characteristics of the quadrotor. In order to deal with suspended load flight, we present a method based on dynamic programming which is a model based offline method. The second investigated method we use is based on the Nelder-Mead algorithm which is an optimization technique used for nonlinear unconstrained optimization problems. This method is model free and it can be used for offline or online generation of the swing-free trajectories for the suspended load. Besides the swing-free maneuvers with suspended load, load trajectory tracking is another problem we solve in this dissertation. In order to solve this problem we use a Nelder-Mead based algorithm. In addition, we use an online least square policy iteration algorithm. At the end, we propose a high level algorithm for navigation in cluttered environments considering a quadrotor with suspended load. Furthermore, distributed control of multiple quadrotors with suspended load is addressed too. The proposed hierarchical architecture presented in this doctoral dissertation is an important step towards developing the next generation of agile autonomous aerial vehicles. These control algorithms enable quadrotors to display agile maneuvers while reconfiguring in real time whenever a change in the center of gravity occurs. This enables a swing-free load transport or trajectory tracking of the load in urban environments in a decentralized fashion

    Search-based Motion Planning for Aggressive Flight in SE(3)

    Get PDF
    Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this work, we develop a search-based trajectory planning approach that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with non-zero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.Comment: 8 pages, submitted to RAL and ICRA 201

    Contributions to Open Problems on Cable Driven Robots and Persistent Manifolds for the Synthesis of Mechanisms

    Get PDF
    Although many efforts are continuously devoted to the advancement of robotics, there are still many open and unresolved problems to be faced. This thesis, therefore, sets out to tackle some of them with the aim of scratching the surface and look a little further for new ideas or solutions. The topics covered are mainly two. The first part deals with the development and improvement of control techniques for cable-driven robots. The second focuses on the study of persistent manifolds seen as constituting aspects of theoretical kinematics. In detail, -Part I deals with cable-driven platforms. In it, both techniques for selecting cable tensions and the design of a robust controller are developed. The aim is, therefore, to enhance the two building blocks of the overall control scheme in order to improve the performance of these robots during the execution of tracking tasks. -- The first chapter introduces to open problems and recalls the main concepts necessary to understand the following chapters; -- the contribution of the second chapter consists of the introduction of the Analytic Centre. It allows the generation of continuous and differentiable tension profiles while taking into account non-linear phenomena such as friction in the computation of tensions to be applied; -- the third chapter, although still at a preliminary stage, introduces sensitivity for tension calculation methods, offering perspectives of considerable interest for tension control in the current scientific context; -- the fourth chapter proposes the design of an adaptive controller. It allows external disturbances and/or uncertainties in the model to be faced such that the task can be performed with as little error as possible. The controller architecture is the innovative peculiarity conferring autonomy to cable systems. Initially applied to counteract wind in aerial systems it is now also used for cable breakage scenarios; -- the conclusions, at first, draw together the results obtained. In addition, they emphasise the lack of the techniques introduced in order to outline possible future paths and topics that need further investigation. - Part II delves into theoretical kinematics. The discovery and classification of invariant screw systems shed light on numerous aspects of robot mobility and synthesis. Nevertheless, this generated the emergence of new ideas and questions that are still unresolved. Among them, one of the more notable concerns the identification and classification of 5-dimensional persistent manifolds. -- Similarly to the first part, the first chapter provides an overview of the problems addressed and the theoretical notions necessary to understand the subsequent contributions; -- the second chapter contributes by directly tackling the above-mentioned question by exploiting the properties of dual quaternions, the Study quadric and differential geometry. A library of 5-persistent varieties, so far missing in the literature, is presented along with theorems that complete and generalise previous ones in the literature; -- an original work, concerning line motions and synthesis of mechanisms that generate them, is reported in the third chapter as a spin-off of the studies on persistent manifolds; -- the conclusions wrap up the obtained results trying to highlight gaps and deficiencies to be dealt with in the future. Here, two small sections are dedicated to ongoing works regarding the persistence definition and the screw systems' invariants and subvariants

    Novel Lyapunov - based autonomous controllers for Qquadrotors

    Get PDF
    In this paper, we look into the dynamic motion planning and control of an unmanned aerial vehicle, namely, the quadrotor, governed by its dynamical equations. It is shown for the first time that the Direct or the Second Method of Lyapunov is an effective tool to derive a set of continuous nonlinear control laws that not only provide smooth trajectories from a designated initial position to a designated target, but also continuously minimise the roll and pitch of the quadrotor en route to its targets. The latter successfully addresses the challenging problem of a quadrotor autonomously transporting valuable and fragile payloads safely to the designated target. Computer simulations are used to illustrate the effectiveness of the proposed control laws
    • …
    corecore