2 research outputs found

    Human-robot cooperation for robust surface treatment using non-conventional sliding mode control

    Full text link
    © 2018 ISA This work presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, deburring, etc. The method considers two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The proposed scheme is based on task priority and adaptive non-conventional sliding mode control. The applicability of the proposed approach is substantiated by experimental results using a redundant 7R manipulator: the Sawyer cobot

    Human-robot cooperation for robust surface treatment using non-conventional sliding mode control

    Full text link
    [EN] This work presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, deburring, etc. The method considers two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The proposed scheme is based on task priority and adaptive non-conventional sliding mode control. The applicability of the proposed approach is substantiated by experimental results using a redundant 7R manipulator: the Sawyer cobot.This work was supported in part by the Spanish Government under the project DPI2017-87656-C2-1-R and the Generalitat Valenciana under Grants VALi + d APOSTD/2016/044 and APOSTD/2017/055.Solanes Galbis, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Valls Miro, J.; Girbés, V.; Tornero Montserrat, J. (2018). Human-robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Transactions. 80(1):528-541. https://doi.org/10.1016/j.isatra.2018.05.013S52854180
    corecore