17,608 research outputs found

    Trajectory Sampling With Unreliable Reporting

    Full text link

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems

    Full text link
    In "equation-free" multiscale computation a dynamic model is given at a fine, microscopic level; yet we believe that its coarse-grained, macroscopic dynamics can be described by closed equations involving only coarse variables. These variables are typically various low-order moments of the distributions evolved through the microscopic model. We consider the problem of integrating these unavailable equations by acting directly on kinetic Monte Carlo microscopic simulators, thus circumventing their derivation in closed form. In particular, we use projective multi-step integration to solve the coarse initial value problem forward in time as well as backward in time (under certain conditions). Macroscopic trajectories are thus traced back to unstable, source-type, and even sometimes saddle-like stationary points, even though the microscopic simulator only evolves forward in time. We also demonstrate the use of such projective integrators in a shooting boundary value problem formulation for the computation of "coarse limit cycles" of the macroscopic behavior, and the approximation of their stability through estimates of the leading "coarse Floquet multipliers".Comment: Submitted to Journal of Computational Physic

    An overview of shed ice impact in the NASA Lewis Icing Research Tunnel

    Get PDF
    One of the areas of active research in commercial and military rotorcraft is directed toward developing the capability of sustained flight in icing conditions. The emphasis to date has been on the accretion and subsequent shedding of ice in an icing environment, where the shedding may be natural or induced. Historically, shed-ice particles have been a problem for aircraft, particularly rotorcraft. Because of the high particle velocities involved, damage to a fuselage or other airframe component from a shed-ice impact can be significant. Design rules for damage tolerance from shed-ice impact are not well developed because of a lack of experimental data. Thus, NASA Lewis (LeRC) has begun an effort to develop a database of impact force and energy resulting from shed ice. This effort consisted of a test of NASA LeRC's Model Rotor Test Rig (MRTR) in the Icing Research Tunnel (IRT). Both natural shedding and forced shedding were investigated. Forced shedding was achieved by fitting the rotor blades with Small Tube Pneumatic (STP) deicer boots manufactured by BF Goodrich. A detailed description of the test is given as well as the design of a new impact sensor which measures the force-time history of an impacting ice fragment. A brief discussion of the procedure to infer impact energy from a force-time trace are required for the impact-energy calculations. Recommendations and future plans for this research area are also provided

    A production modeling approach to the assessment of the horseshoe crab (Limulus polyphemus) population in Delaware Bay

    Get PDF
    Horseshoe crab (Limulus polyphemus) is harvested commercially, used by the biomedical industry, and provides food for migrating shorebirds, particularly in Delaware Bay. Recently, decreasing crab population trends in this region have raised concerns that the stock may be insufficient to fulfill the needs of these diverse user groups. To assess the Delaware Bay horseshoe crab population, we used surplus production models (programmed in ASPIC), which incorporated data from fishery-independent surveys, fishery-dependent catch-per-unit-of-effort data, and regional harvest. Results showed a depleted population (B2003/=0.03−0.71) BMSY and high relative fishing mortality /FMSY=0.9−9.5). Future harvest (F2002strategies for a 15-year period were evaluated by using population projections with ASPICP software. Under 2003 harvest levels (1356 t), population recovery to BMSY would take at least four years, and four of the seven models predicted that the population would not reach BMSY within the 15year period. Production models for horseshoe crab assessment provided management benchmarks for a species with limited data and no prior stock assessmen
    corecore