895 research outputs found

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Improved Modified Chaotic Invasive Weed Optimization Approach to Solve Multi-Target Assignment for Humanoid Robot

    Get PDF
    The paper presents an improved modified chaotic invasive weed optimization (IMCIWO) approach for solving a multi-target assignment for humanoid robot navigation. MCIWO is improved by utilizing the Bezier curve for smoothing the path and replaces the conventional split lines. In order to efficiently determine subsequent locations of the robot from the present location on the provided terrain, such that the routes to be specifically generated for the robot are relatively small, with the shortest distance from the barriers that have been generated using the IMCIWO approach. The MCIWO approach designed the path based on obstacles and targets position which is further smoothened by the Bezier curve. Simulations are performed which is further validated by real-time experiments in WEBOT and NAO robot respectively. They show good effectiveness with each other with a deviation of under 5%. Ultimately, the superiority of the developed approach is examined with existing techniques for navigation, and findings are substantially improved

    Mobile Robot Path Planning Optimization Based on Integration of Firefly Algorithm and Cubic Polynomial Equation

    Get PDF
    Mobile Robot is an extremely essential technology in the industrial world. Optimal path planning is essential for the navigation of mobile robots. The firefly algorithm is a very promising tool of Swarm Intelligence, which is used in various optimization areas. This study used the firefly algorithm to solve the mobile robot path-planning problem and achieve optimal trajectory planning. The objective of the proposed method is to find the free-collision-free points in the mobile robot environment and then generate the optimal path based on the firefly algorithm. It uses the A∗ algorithm to find the shortest path. The essential function of use the firefly algorithm is applied to specify the optimal control points for the corresponding shortest smooth trajectory of the mobile robot. Cubic Polynomial equation is applied to generate a smooth path from the initial point to the goal point during a specified period. The results of computer simulation demonstrate the efficiency of the firefly algorithm in generating optimal trajectory of mobile robot in a variable degree of mobile robot environment complexity

    HYBRID FUZZY CONTROL AND ANT COLONY OPTIMIZATION BASED PATH PLANNING FOR WHEEL MOBILE ROBOT NAVIGATION

    Get PDF
    Wheeled Mobile Robot (WMR) is extremely important for active target tracking control and reactive obstacle avoidance in an unstructured environment. A WMR needs the best control performance an automatic path planning to maintain a very high level of accuracy. Therefore, the development of control strategies and path planning is very significant. Hence, research was carried out to investigate the control and path planning issues of WMR in dynamic environment. Several controllers such as conventional controller Proportional (P), Integral (I), Derivative (D) and Fuzzy Logic controller were investigated. A Hybrid Controller for differential WMR was proposed. Various aspects of the research on WMR such as kinematics model, conventional controller, fuzzy controller and hybrid controller were discussed. Overall it was found that on average the Hybrid Controller gives the best performance with 5.5s, 5.4s and 11s for target of 10x 10y, 30x10y and 60x20y respectively

    A one decade survey of autonomous mobile robot systems

    Get PDF
    Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability

    Swarm Robotics: An Extensive Research Review

    Get PDF

    Cooperative Object Transport in Multi-robot Systems:A Review of the State-of-the-Art

    Get PDF
    In recent years, there has been a growing interest in designing multi-robot systems (hereafter MRSs) to provide cost effective, fault-tolerant and reliable solutions to a variety of automated applications. Here, we review recent advancements in MRSs specifically designed for cooperative object transport, which requires the members of MRSs to coordinate their actions to transport objects from a starting position to a final destination. To achieve cooperative object transport, a wide range of transport, coordination and control strategies have been proposed. Our goal is to provide a comprehensive summary for this relatively heterogeneous and fast-growing body of scientific literature. While distilling the information, we purposefully avoid using hierarchical dichotomies, which have been traditionally used in the field of MRSs. Instead, we employ a coarse-grain approach by classifying each study based on the transport strategy used; pushing-only, grasping and caging. We identify key design constraints that may be shared among these studies despite considerable differences in their design methods. In the end, we discuss several open challenges and possible directions for future work to improve the performance of the current MRSs. Overall, we hope to increase the visibility and accessibility of the excellent studies in the field and provide a framework that helps the reader to navigate through them more effectivelypublishersversionPeer reviewe

    Grey Wolf Optimizer-Based Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots

    Get PDF
    This paper proposes two applications of Grey Wolf Optimizer (GWO) algorithms to a path planning (PaPl) problem and a Proportional-Integral (PI)-fuzzy controller tuning problem. Both optimization problems solved by GWO algorithms are explained in detail. An off-line GWO-based PaPl approach for Nonholonomic Wheeled Mobile Robots (NWMRs) in static environments is proposed. Once the PaPl problem is solved resulting in the reference trajectory of the robots, the paper also suggests a GWO-based approach to tune cost-effective PI-fuzzy controllers in tracking control problem for NWMRs. The experimental results are demonstrated through simple multiagent settings conducted on the nRobotic platform developed at the Politehnica University of Timisoara, Romania, and they prove both the effectiveness of the two GWO-based approaches and major performance improvement

    Efficient PID Controller based Hexapod Wall Following Robot

    Get PDF
    This paper presents a design of wall followingbehaviour for hexapod robot based on PID controller. PIDcontroller is proposed here because of its ability to controlmany cases of non-linear systems. In this case, we proposed aPID controller to improve the speed and stability of hexapodrobot movement while following the wall. In this paper, PIDcontroller is used to control the robot legs, by adjusting thevalue of swing angle during forward or backward movement tomaintain the distance between the robot and the wall. Theexperimental result was verified by implementing the proposedcontrol method into actual prototype of hexapod robot
    • …
    corecore