1,010 research outputs found

    Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions

    Get PDF
    Open access articleCurrently autonomous or self-driving vehicles are at the heart of academia and industry research because of its multi-faceted advantages that includes improved safety, reduced congestion,lower emissions and greater mobility. Software is the key driving factor underpinning autonomy within which planning algorithms that are responsible for mission-critical decision making hold a significant position. While transporting passengers or goods from a given origin to a given destination, motion planning methods incorporate searching for a path to follow, avoiding obstacles and generating the best trajectory that ensures safety, comfort and efficiency. A range of different planning approaches have been proposed in the literature. The purpose of this paper is to review existing approaches and then compare and contrast different methods employed for the motion planning of autonomous on-road driving that consists of (1) finding a path, (2) searching for the safest manoeuvre and (3) determining the most feasible trajectory. Methods developed by researchers in each of these three levels exhibit varying levels of complexity and performance accuracy. This paper presents a critical evaluation of each of these methods, in terms of their advantages/disadvantages, inherent limitations, feasibility, optimality, handling of obstacles and testing operational environments. Based on a critical review of existing methods, research challenges to address current limitations are identified and future research directions are suggested so as to enhance the performance of planning algorithms at all three levels. Some promising areas of future focus have been identified as the use of vehicular communications (V2V and V2I) and the incorporation of transport engineering aspects in order to improve the look-ahead horizon of current sensing technologies that are essential for planning with the aim of reducing the total cost of driverless vehicles. This critical review on planning techniques presented in this paper, along with the associated discussions on their constraints and limitations, seek to assist researchers in accelerating development in the emerging field of autonomous vehicle research

    Obstacle Filtering Alogrithm for Control of an Autonomous Road Vehicle in Public Highway Traffic

    Get PDF
    This paper presents an obstacle filtering algorithm that mimics human driver-like grouping of objects within a model predictive control scheme for an autonomous road vehicle. In the algorithm, a time to collision criteria is first used as risk assessment indicator to filter the potentially dangerous obstacle object vehicles in the proximity of the autonomously controlled vehicle. Then, the filtered object vehicles with overlapping elliptical collision areas put into groups. A hyper elliptical boundary is regenerated to define an extended collision area for the group. To minimize conservatism, the parameters for the tightest hyper ellipse are determined by solving an optimization problem. By excluding undesired local minimums for the planning problem, the grouping alleviates limitations that arise from the limited prediction horizons used in the model predictive control. The computational details of the proposed algorithm as well as its performance are illustrated using simulations of an autonomously controlled vehicle in public highway traffic scenarios involving multiple other vehicles

    Predictive Maneuver Planning and Control of an Autonomous Vehicle in Multi-Vehicle Traffic with Observation Uncertainty

    Get PDF
    Autonomous vehicle technology is a promising development for improving the safety, efficiency and environmental impact of on-road transportation systems. However, the task of guiding an autonomous vehicle by rapidly and systematically accommodating the plethora of changing constraints, e.g. of avoiding multiple stationary and moving obstacles, obeying traffic rules, signals and so on as well as the uncertain state observation due to sensor imperfections, remains a major challenge. This dissertation attempts to address this challenge via designing a robust and efficient predictive motion planning framework that can generate the appropriate vehicle maneuvers (selecting and tracking specific lanes, and related speed references) as well as the constituent motion trajectories while considering the differential vehicle kinematics of the controlled vehicle and other constraints of operating in public traffic. The main framework combines a finite state machine (FSM)-based maneuver decision module with a model predictive control (MPC)-based trajectory planner. Based on the prediction of the traffic environment, reference speeds are assigned to each lane in accordance with the detection of objects during measurement update. The lane selection decisions themselves are then incorporated within the MPC optimization. The on-line maneuver/motion planning effort for autonomous vehicles in public traffic is a non-convex problem due to the multiple collision avoidance constraints with overlapping areas, lane boundaries, and nonlinear vehicle-road dynamics constraints. This dissertation proposes and derives some remedies for these challenges within the planning framework to improve the feasibility and optimality of the solution. Specifically, it introduces vehicle grouping notions and derives conservative and smooth algebraic models to describe the overlapped space of several individual infeasible spaces and help prevent the optimization from falling into undesired local minima. Furthermore, in certain situations, a forced objective selection strategy is needed and adopted to help the optimization jump out of local minima. Furthermore, the dissertation considers stochastic uncertainties prevalent in dynamic and complex traffic and incorporate them with in the predictive planning and control framework. To this end, Bayesian filters are implemented to estimate the uncertainties in object motions and then propagate them into the prediction horizon. Then, a pair-wise probabilistic collision condition is defined for objects with non-negligible geometrical shape/sizes and computationally efficient and conservative forms are derived to efficiently and analytically approximate the involved multi-variate integrals. The probabilistic collision evaluation is then applied within a vehicle grouping algorithms to cluster the object vehicles with closeness in positions and speeds and eventually within the stochastic predictive maneuver planner framework to tighten the chanced-constraints given a deterministic confidence margin. It is argued that these steps make the planning problem tractable for real-time implementation on autonomously controlled vehicles
    • …
    corecore