49 research outputs found

    Evaluation of Integrated Demand Management Looking into Strategic & Tactical Flow Management

    Get PDF
    The motivation behind Integrated Demand Management (IDM) research is to explore possible improvements to United States National Airspace System (NAS) performance that could be realized through procedural integration of strategic traffic flow management capabilities, such as the Collaborative Trajectory Options Program (CTOP), and tactical capabilities, such as Time Based Flow Management (TBFM). An initial IDM concept for clear weather operations was developed and evaluated for potential benefits, including efficiency, delay reduction, predictability and throughput, and to identify any major issues that might represent a showstopper for a fielded application. Newark Liberty International Airport (EWR) arrival operations provided a use case for concept development. EWR uses miles-in-trail (MIT) metering to regulate demand into TBFM during high volume operations, and short-haul flights are often penalized with excessive, last-minute ground delays when the overhead stream is saturated. IDM addresses this problem by replacing MIT conditioning with CTOP to better manage the demand delivery to the TBFM entry points. A quasi-real time high-fidelity simulation that would normally involve participants was conducted using heuristic-based procedures that mimicked operators behaviors instead. Five total conditions were compared: two baseline conditions with MIT delivery to TBFM entry points using two different TBFM settings; and three IDM conditions: one with airborne speed control using an Required Time of Arrival (RTA) capability, a second without RTA, and a third with no wind forecast errors. Results suggest that the IDM concept can deliver traffic more efficiently by shifting the delays from airborne to ground for both RTA and non-RTA conditions, while maintaining a target throughput rate. The results also suggest that with good predictability of airport capacity, excessive TBFM ground delay can be minimized by applying more strategic CTOP delay, increasing predictability for the airline operators. Overall, the results indicate that the implementation of an IDM concept under clear weather conditions can improve NAS system performance. Future IDM research aims to expand the concept to address demandcapacity imbalance d severe weather

    Mechanisms for Trajectory Options Allocation in Collaborative Air Traffic Flow Management

    Get PDF
    Flight delays are primarily due to traffic imbalances caused by the demand for airspace resource exceeding its capacity. The capacity restriction might be due to inclement weather, an overloaded air traffic sector, or an airspace restriction. The Federal Aviation Administration (FAA), the organization responsible for air traffic control and management in the USA, has developed several tools known as Traffic Management Initiatives (TMI) to bring the demand into compliance with the capacity constraints. Collaborative Trajectory Option Program (CTOP) is one such tool that has been developed by the FAA to mitigate the delay experienced by flights. Operating under a Collaborative Decision Making (CDM) environment, CTOP is considered as the next step into the future of air traffic management by the FAA. The advantages of CTOP over the traditional the TMIs are unequivocal. The concerns about the allocation scheme used in the CTOP and treatment of flights from the flight operators/airlines have limited its usage. This research was motivated by the high ground delays that were experienced by flights and how the rerouting decisions were made in the current allocation method used in a CTOP. We have proposed four alternative approaches in this thesis, which incorporated priority of flights by the respective flight operator, aimed at not merely reducing an individual flight operator’s delay but also the total delay incurred to the system. We developed a test case scenario to compare the performances of the four proposed allocation methods against one another and with the present allocation mechanism of CTOP

    Two-stage combinatorial optimization framework for air traffic flow management under constrained capacity

    Get PDF
    Air traffic flow management is a critical component of air transport operations because at some point in time, often very frequently, one of more of the critical resources in the air transportation network has significantly reduced capacity, resulting in congestion and delay for airlines and other entities and individuals who use the network. Typically, these “bottlenecks” are noticed at a given airport or terminal area, but they also occur in en route airspace. The two-stage combinatorial optimization framework for air traffic flow management under constrained capacity that is presented in this thesis, represents a important step towards the full consideration of the combinatorial nature of air traffic flow management decision that is often ignored or dealt with via priority-based schemes. It also illustrates the similarities between two traffic flow management problems that heretofore were considered to be quite distinct. The runway systems at major airports are highly constrained resources. From the perspective of arrivals, unnecessary delays and emissions may occur during peak periods when one or more runways at an airport are in great demand while other runways at the same airport are operating under their capacity. The primary cause of this imbalance in runway utilization is that the traffic flow into and out of the terminal areas is asymmetric (as a result of airline scheduling practices), and arrivals are typically assigned to the runway nearest the fix through which they enter the terminal areas. From the perspective of departures, delays and emissions occur because arrivals take precedence over departures with regard to the utilization of runways (despite the absence of binding safety constraints), and because arrival trajectories often include level segments that ensure “procedural separation” from arriving traffic while planes are not allowed to climb unrestricted along the most direct path to their destination. Similar to the runway systems, the terminal radar approach control facilities (TRACON) boundary fixes are also constrained resources of the terminal airspace. Because some arrival traffic from different airports merges at an arrival fix, a queue for the terminal areas generally starts to form at the arrival fix, which are caused by delays due to heavy arriving traffic streams. The arrivals must then absorb these delays by path stretching and adjusting their speed, resulting in unplanned fuel consumption. However, these delays are often not distributed evenly. As a result, some arrival fixes experience severe delays while, similar to the runway systems, the other arrival fixes might experience no delays at all. The goal of this thesis is to develop a combined optimization approach for terminal airspace flow management that assigns a TRACON boundary fix and a runway to each flight while minimizing the required fuel burn and emissions. The approach lessens the severity of terminal capacity shortage caused by and imbalance of traffic demand by shunting flights from current positions to alternate runways. This is done by considering every possible path combination. To attempt to solve the congestion of the terminal airspace at both runways and arrival fixes, this research focuses on two sequential optimizations. The fix assignments are dealt with by considering, simultaneously, the capacity constraints of fixes and runways as well as the fuel consumption and emissions of each flight. The research also develops runway assignments with runway scheduling such that the total emissions produced in the terminal area and on the airport surface are minimized. The two-stage sequential framework is also extended to en route airspace. When en route airspace loses its capacity for any reason, e.g. severe weather condition, air traffic controllers and flight operators plan flight schedules together based on the given capacity limit, thereby maximizing en route throughput and minimizing flight operators' costs. However, the current methods have limitations due to the lacks of consideration of the combinatorial nature of air traffic flow management decision. One of the initial attempts to overcome these limitations is the Collaborative Trajectory Options Program (CTOP), which will be initiated soon by the Federal Aviation Administration (FAA). The developed two-stage combinatorial optimization framework fits this CTOP perfectly from the flight operator's perspective. The first stage is used to find an optimal slot allocation for flights under satisfying the ration by schedule (RBS) algorithm of the FAA. To solve the formulated first stage problem efficiently, two different solution methodologies, a heuristic algorithm and a modified branch and bound algorithm, are presented. Then, flights are assigned to the resulting optimized slots in the second stage so as to minimize the flight operator's costs.Ph.D

    Alternative Trajectory Options for Delay Reduction in Demand and Capacity Balancing

    Get PDF
    Aiming to a more collaborative demand and capacity balancing (DCB), in the scope of trajectory based operations, this paper presents an approach that takes alternative trajectories into a DCB optimization algorithm. These alternative trajectories are generated by the airspace users for those flights traversing hotspots (i.e. sectors with demand above capacity), which are predicted by the Network Manager. The trajectories consider lateral re-routings and/or vertical avoidance of all detected hotspots, which, along with different types of delay measures (including linear holding and in-flight delay recovery), are then integrated as a whole into a centralized optimization model to manage the traffic flow under a set of static scheme of airspace capacities. The combination of trajectory options and distribution of delays are hence optimized with the objective of minimizing the total deviation with regard to airspace users’ preferences (taking into account the fuel consumption, route charge and the cost of delay). Results suggest that delays can be remarkably reduced once alternative trajectory options are included in the DCB algorithm. Nevertheless, this delay reduction is obtained by diverting a large number of flights, yielding to an interesting trade-off between environmental impact and cost-efficiency for the airspace users.Peer ReviewedPostprint (published version

    Reroute Prediction Service

    Full text link
    The cost of delays was estimated as 33 billion US dollars only in 2019 for the US National Airspace System, a peak value following a growth trend in past years. Aiming to address this huge inefficiency, we designed and developed a novel Data Analytics and Machine Learning system, which aims at reducing delays by proactively supporting re-routing decisions. Given a time interval up to a few days in the future, the system predicts if a reroute advisory for a certain Air Route Traffic Control Center or for a certain advisory identifier will be issued, which may impact the pertinent routes. To deliver such predictions, the system uses historical reroute data, collected from the System Wide Information Management (SWIM) data services provided by the FAA, and weather data, provided by the US National Centers for Environmental Prediction (NCEP). The data is huge in volume, and has many items streamed at high velocity, uncorrelated and noisy. The system continuously processes the incoming raw data and makes it available for the next step where an interim data store is created and adaptively maintained for efficient query processing. The resulting data is fed into an array of ML algorithms, which compete for higher accuracy. The best performing algorithm is used in the final prediction, generating the final results. Mean accuracy values higher than 90% were obtained in our experiments with this system. Our algorithm divides the area of interest in units of aggregation and uses temporal series of the aggregate measures of weather forecast parameters in each geographical unit, in order to detect correlations with reroutes and where they will most likely occur. Aiming at practical application, the system is formed by a number of microservices, which are deployed in the cloud, making the system distributed, scalable and highly available.Comment: Submitted to the 2023 IEEE/AIAA Digital Aviation Systems Conference (DASC

    Big data-driven prediction of airspace congestion

    Full text link
    Air Navigation Service Providers (ANSP) worldwide have been making a considerable effort for the development of a better method to measure and predict aircraft counts within a particular airspace, also referred to as airspace density. An accurate measurement and prediction of airspace density is crucial for a better managed airspace, both strategically and tactically, yielding a higher level of automation and thereby reducing the air traffic controller's workload. Although the prior approaches have been able to address the problem to some extent, data management and query processing of ever-increasing vast volume of air traffic data at high rates, for various analytics purposes such as predicting aircraft counts, still remains a challenge especially when only linear prediction models are used. In this paper, we present a novel data management and prediction system that accurately predicts aircraft counts for a particular airspace sector within the National Airspace System (NAS). The incoming Traffic Flow Management (TFM) data is streaming, big, uncorrelated and noisy. In the preprocessing step, the system continuously processes the incoming raw data, reduces it to a compact size, and stores it in a NoSQL database, where it makes the data available for efficient query processing. In the prediction step, the system learns from historical trajectories and uses their segments to collect key features such as sector boundary crossings, weather parameters, and other air traffic data. The features are fed into various regression models, including linear, non-linear and ensemble models, and the best performing model is used for prediction. Evaluation on an extensive set of real track, weather, and air traffic data including boundary crossings in the U.S. verify that our system efficiently and accurately predicts aircraft counts in each airspace sector.Comment: Submitted to the 2023 IEEE/AIAA Digital Aviation Systems Conference (DASC

    Management by Trajectory Trade Study of Roles and Responsibilities Between Participants and Automation Report

    Get PDF
    This report describes a trade study of roles and responsibilities associated with the Management by Trajectory (MBT) concept. The MBT concept describes roles, responsibilities, and information and automation requirements for providing air traffic controllers and managers the ability to quickly generate, evaluate and implement changes to an aircraft's trajectory. In addition, the MBT concept describes mechanisms for imposing constraints on flight operator preferred trajectories only to the extent necessary to maintain safe and efficient traffic flows, and the concept provides a method for the exchange of trajectory information between ground automation systems and the aircraft that allows for trajectory synchronization and trajectory negotiation. The participant roles considered in this trade study include: airline dispatcher, flight crew, radar controller, traffic manager, and Air Traffic Control System Command Center (ATCSCC) traffic management specialists. The proposed allocation of roles and responsibilities was based on analysis of several use cases that were developed for this purpose as well as for walking through concept elements. The resulting allocation of roles and responsibilities reflects both increased automation capability to support many aviation functions, as well as increased flexibility to assign responsibilities to different participants - in many cases afforded by the increased automation capabilities. Note that the selection of participants to consider for allocation of each function is necessarily rooted in the current environment, in that MBT is envisioned as an evolution of the National Airspace System (NAS), and not a revolution. A key feature of the MBT allocations is a vision for the traffic management specialist to take on a greater role. This is facilitated by the vision that separation management functions, in addition to traffic management functions, will be carried out as trajectory management functions. This creates an opportunity for flexibility, allowing the traffic management specialist to carry out tasks that today can only be carried out by the controller currently in contact with the aircraft. This additional tasking for the traffic management specialist comes with requirements for workload management. An increased role for the Data-side (D-side) controller relative to the Radar-side (R-side) controller is a potential approach to mitigating workload for the traffic management specialist, as the D-side controller would have similar ability to perform separation management functions in what today might be considered the "trajectory management" timeframe. This analysis did not distinguish between the D-side and R-side controllers since in many cases the R-side controller works unassisted

    Reducing ATFM delays through strategic flight planning

    Get PDF
    This paper presents an integer programming model for strategic redistribution of flights so as to respect nominal sector capacities, in short computation times for large-scale instances. The main contribution lies in the combination of tackling large-scale strategic flight planning using hard capacity constraints, while considering the whole network (i.e., both airports and sectors). Real historic data for network and traffic description are used for our test instance. Strategic and tactical impact assessments show that early flight planning can lead to the reduction of delays and their costs, showing potential for actual implementation
    corecore