111,513 research outputs found

    Batch-to-Batch Iterative Learning Control of a Fed-Batch Fermentation Process

    Get PDF
    In this work, Iterative Learning Control on a fed-batch fermentation process using linearised models has been studied. The repetitive nature of batch processes enables ILC to obtain information from a previous batch in order to improve the performance of the current batch such that the product quality converges asymptotically to the desired trajectory The basic batch to batch ILC law presents the control action of a current batch as a summation of the control action from the previous batch and the deviation of the output trajectory from the desired reference trajectory incorporation with a learning rate. In a bid to address the issue of the process non-linearity, the control policy and the output trajectory were linearised around their respective nominal trajectories. The linearised models were then identified using Multi Linear Regression (MLR), Principal Component Analysis (PCR) and Partial Least Squares (PLS). In order to curb the effects of plant-model mismatches and process variations, the linearised models were reidentified after each batch operation. This was done by selecting the immediate previous batch as the nominal batch and then adding the recently obtained process data into the historical data batch on completion of the current batch run. The weighting matrices in the objective function were carefully selected taking into consideration that they have a major influence on the robust performance of the process. In using PLS and PCR models the issue of process collinearity was effectively addressed. The proposed batch to batch ILC strategy was applied to a simulated fed-batch fermentation process for the production of secreted protein. The results of the optimal control policy were comparable to that obtained in using full mechanistic model. ILC, a simple but yet an effective optimal control strategy has demonstrated to be a viable option in complex processes such as batch processes where mechanistic models are difficult to develop. Keywords: Iterative Learning Control, batch process, fed-batch fermentation, batch to batch ILC, control policy. DOI: 10.7176/CMR/14-3-02 Publication date:August 31st 202

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space.

    Get PDF
    Three-dimensional (3D) spatial cells in the mammalian hippocampal formation are believed to support the existence of 3D cognitive maps. Modeling studies are crucial to comprehend the neural principles governing the formation of these maps, yet to date very few have addressed this topic in 3D space. Here we present a hierarchical network model for the formation of 3D spatial cells using anti-Hebbian network. Built on empirical data, the model accounts for the natural emergence of 3D place, border, and grid cells, as well as a new type of previously undescribed spatial cell type which we call plane cells. It further explains the plausible reason behind the place and grid-cell anisotropic coding that has been observed in rodents and the potential discrepancy with the predicted periodic coding during 3D volumetric navigation. Lastly, it provides evidence for the importance of unsupervised learning rules in guiding the formation of higher-dimensional cognitive maps
    • …
    corecore