140 research outputs found

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Effectiveness of intensive physiotherapy for gait improvement in stroke: systematic review

    Get PDF
    Introduction: Stroke is one of the leading causes of functional disability worldwide. Approximately 80% of post-stroke subjects have motor changes. Improvement of gait pattern is one of the main objectives of physiotherapists intervention in these cases. The real challenge in the recovery of gait after stroke is to understand how the remaining neural networks can be modified, to be able to provide response strategies that compensate for the function of the affected structures. There is evidence that intensive training, including physiotherapy, positively influences neuroplasticity, improving mobility, pattern and gait velocity in post-stroke recovery. Objectives: Review and analyze in a systematic way the experimental studies (RCT) that evaluate the effects of Intensive Physiotherapy on gait improvement in poststroke subjects. Methodology: Were only included all RCT performed in humans, without any specific age, that had a clinical diagnosis of stroke at any stage of evolution, with sensorimotor deficits and functional gait changes. The databases used were: Pubmed, PEDro (Physiotherapy Evidence Database) and CENTRAL (Cochrane Center Register of Controlled Trials). Results: After the application of the criteria, there were 4 final studies that were included in the systematic review. 3 of the studies obtained a score of 8 on the PEDro scale and 1 obtained a score of 4. The fact that there is clinical and methodological heterogeneity in the studies evaluated, supports the realization of the current systematic narrative review, without meta-analysis. Discussion: Although the results obtained in the 4 studies are promising, it is important to note that the significant improvements that have been found, should be carefully considered since pilot studies with small samples, such as these, are not designed to test differences between groups, in terms of the effectiveness of the intervention applied. Conclusion: Intensive Physiotherapy seems to be safe and applicable in post-stroke subjects and there are indications that it is effective in improving gait, namely speed, travelled distance and spatiotemporal parameters. However, there is a need to develop more RCTs with larger samples and that evaluate the longterm resultsN/

    An Improved 2DOF Elastokinematic Surrogate Model for Continuous Motion Prediction and Visualisation of Forearm Pro-and Supination for Surgical Planning

    Get PDF
    Forearm rotation (pro-/supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This thesis regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. In addition, the influence of the bone morphology and position of elbow on kinematics are also considered. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and to fit the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation. Moreover, the minimum distance changing between bones during forearm rotation is elucidated, which is not yet proved in anatomical and clinical literatures. The minimum distance is calculated by searching for the global shortest distance between bone contours on ulna and radius by a two-level selection and a following multidimensional Newton-Raphson algorithm. To this end, the methodology is extended from healthy bones to deformed arms and an angulated forearm model is developed. The 3D angulated bone geometry is obtained by manually separating the bone structure at the broken position, and the minimum distance and the range of motion of fractured forearms are analyzed. As shown for a single case validation, simulated results show very small deviations from anatomical data. Furthermore, the simulations discussed above are visualized using interactive interfaces, which facilitates the application of the model in clinical planning.Die Unterarmrotation beinhaltet eine nicht triviale Kombination einer Rotation und Translokation zweier Knochen, Radius und Ulna relativ zu einander. Frühere Arbeiten betrachteten diese relative Bewegung als eine Rotation um eine fixierte Achse. Allerdings scheint diese Annahme ungenau zu sein. Diese Arbeit betrachtet ein Spatial-Loop Surrogat Mechanismus unter Berücksichtigung von zwei Freiheitsgraden mit einer elastischen Gelenkverbindung für eine bessere Prognose der Unterarm-Bewegung. Zusätzlich wird der Einfluss der Knochenmorphologie und die Position des Ellenbogens auf die Kinematik berücksichtig. Die Modellparameter werden nicht direkt von den anatomischen Komponenten bestimmt, sondern unter Berücksichtigung der Abweichung von Annahme und Messung. Zur nicht invasiven Messung der Knochenposition wird die Methode der Magnetresonanztomographie (MRT) angewendet. Wir stellen hier eine Methode um die Arm-Position in das MRI Scan-Rohr selbst zu kalibrieren und die Modellparameter aus einige grobe MRT-Aufnahmen zu passen. Die simulierten Ergebnisse zeigen sehr kleine Abweichungen von anatomischen Daten. Eine minimale Änderung der Distanz zwischen den Knochen während der Unterarmrotation wird beleuchte, die bisher nicht in der anatomischen und klinischen Literatur beschrieben ist. Die Berechnung der minimalen Distanz erfolgt über die Ermittlung der gesamt kürzesten Distanz. Zu diesem Zweck wird die Methodik von gesunden Knochen auf deformiere Arme und ein angewinkeltes Unterarmmodel entwickelt. Die 3D gewinkelte Knochen-Geometrie ergibt sich aus der Knochenstruktur an der gebrochener Position manuell zu trennen, und darauf werden der Mindestabstand und der Bereich der Bewegung von dem gebrochenen Unterarm analysiert. Wie dies bei einer einzelnen Fall Validierung, zeigen die simulierten Ergebnisse sehr kleine Abweichungen von anatomischen Daten. Darüber hinaus werden die oben beschrieben Simulationen mit interaktiven Benutzeroberflächen visualisiert, welche die Anwendung des Modells in der klinischen Planung erleichtert

    Reference Frames in Human Sensory, Motor, and Cognitive Processing

    Get PDF
    Reference-frames, or coordinate systems, are used to express properties and relationships of objects in the environment. While the use of reference-frames is well understood in physical sciences, how the brain uses reference-frames remains a fundamental question. The goal of this dissertation is to reach a better understanding of reference-frames in human perceptual, motor, and cognitive processing. In the first project, we study reference-frames in perception and develop a model to explain the transition from egocentric (based on the observer) to exocentric (based outside the observer) reference-frames to account for the perception of relative motion. In a second project, we focus on motor behavior, more specifically on goal-directed reaching. We develop a model that explains how egocentric perceptual and motor reference-frames can be coordinated through exocentric reference-frames. Finally, in a third project, we study how the cognitive system can store and recognize objects by using sensorimotor schema that allows mental rotation within an exocentric reference-frame

    The re-education of upper limb movement post stroke using iterative learning control mediated by electrical stimulation

    No full text
    An inability to perform tasks involving reaching is a common problem following stroke. Evidence supports the use of robotic therapy and electrical stimulation (ES) to reduce upper limb impairments following stroke, but current systems may not encourage maximal voluntary contribution from the participant. This study developed and tested iterative learning control (ILC) algorithms mediated by ES, using a purpose designed robotic workstation, for upper limb rehabilitation post stroke. Surface electromyography (EMG) which may be related to impaired performance and function was used to investigate seven shoulder and elbow muscle activation patterns in eight neurologically intact and five chronic stroke participants during nine tracking tasks. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional horizontal plane.Outcome measures taken prior to and after an intervention consisted of the Fugl-Meyer Assessment (FMA) and the Action Research Arm Test (ARAT), isometric force and error tracking. The intervention for stroke participants consisted of eighteen sessions in which a similar range of tracking tasks were performed with the addition of responsive electrical stimulation to their triceps muscle. A question set was developed to understand participants’ perceptions of the ILC system. Statistically significant improvements were measured (p?0.05) in: FMA motor score, unassisted tracking, and in isometric force. Statistically significant differences in muscle activation patterns were observed between stroke and neurologically intact participants for timing, amplitude and coactivation patterns. After the intervention significant changes were observed in many of these towards neurologically intact ranges. The robot–assisted therapy was well accepted and tolerated by the stroke participants. This study has demonstrated the feasibility of using ILC mediated by ES for upper limb stroke rehabilitation in the treatment of stroke patients with upper limb hemiplegia

    Development of Digital Control Systems for Wearable Mechatronic Devices: Applications in Musculoskeletal Rehabilitation of the Upper Limb

    Get PDF
    The potential for wearable mechatronic systems to assist with musculoskeletal rehabilitation of the upper limb has grown with the technology. One limiting factor to realizing the benefits of these devices as motion therapy tools is within the development of digital control solutions. Despite many device prototypes and research efforts in the surrounding fields, there are a lack of requirements, details, assessments, and comparisons of control system characteristics, components, and architectures in the literature. Pairing this with the complexity of humans, the devices, and their interactions makes it a difficult task for control system developers to determine the best solution for their desired applications. The objective of this thesis is to develop, evaluate, and compare control system solutions that are capable of tracking motion through the control of wearable mechatronic devices. Due to the immaturity of these devices, the design, implementation, and testing processes for the control systems is not well established. In order to improve the efficiency and effectiveness of these processes, control system development and evaluation tools have been proposed. The Wearable Mechatronics-Enabled Control Software framework was developed to enable the implementation and comparison of different control software solutions presented in the literature. This framework reduces the amount of restructuring and modification required to complete these development tasks. An integration testing protocol was developed to isolate different aspects of the control systems during testing. A metric suite is proposed that expands on the existing literature and allows for the measurement of more control characteristics. Together, these tools were used ii ABSTRACT iii to developed, evaluate, and compare control system solutions. Using the developed control systems, a series of experiments were performed that involved tracking elbow motion using wearable mechatronic elbow devices. The accuracy and repeatability of the motion tracking performances, the adaptability of the control models, and the resource utilization of the digital systems were measured during these experiments. Statistical analysis was performed on these metrics to compare between experimental factors. The results of the tracking performances show some of the highest accuracies for elbow motion tracking with these devices. The statistical analysis revealed many factors that significantly impact the tracking performance, such as visual feedback, motion training, constrained motion, motion models, motion inputs, actuation components, and control outputs. Furthermore, the completion of the experiments resulted in three first-time studies, such as the comparison of muscle activation models and the quantification of control system task timing and data storage needs. The successes of these experiments highlight that accurate motion tracking, using biological signals of the user, is possible, but that many more efforts are needed to obtain control solutions that are robust to variations in the motion and characteristics of the user. To guide the future development of these control systems, a national survey was conducted of therapists regarding their patient data collection and analysis methods. From the results of this survey, a series of requirements for software systems, that allow therapists to interact with the control systems of these devices, were collected. Increasing the participation of therapists in the development processes of wearable assistive devices will help to produce better requirements for developers. This will allow the customization of control systems for specific therapies and patient characteristics, which will increase the benefit and adoption rate of these devices within musculoskeletal rehabilitation programs

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc
    corecore