193 research outputs found

    A Novel Method for Prediction of Mobile Robot Maneuvering Spaces

    Get PDF
    As the operational uses of mobile robots continue to expand, it becomes useful to be able to predict the admissible maneuvering space to prevent the robot from executing unsafe maneuvers. A novel method is proposed to address this need by using force-moment diagrams to characterize the robot’s maneuvering space in terms of path curvature and curvature rate. Using the proposed superposition techniques, these diagrams can then be transformed in real-time to provide a representation of the permissible maneuvering space while allowing for changes in the robot’s loading and terrain conditions. Simulation results indicate that the technique can be applied to determine the appropriate maneuvering space for a given set of loading conditions, longitudinal acceleration, and tire-ground coefficient of friction. This may lead to potential expansion in the ability to integrate predictive vehicle dynamics into autonomous controllers for mobile robots and a corresponding potential to safely increase operating speeds

    Interactive multiple model filtering for robotic navigation and tracking applications

    Get PDF
    The work contained in this thesis focuses on two main objectives. The first objective is to evaluate the Interactive Multiple Model (IMM) filter method for robotic applications including inertial navigation systems (INS) and computer vision tracking. The second objective is to design an experimental testbed for multi-model mobile robot state estimation research in the Intelligent Systems Laboratory (ISLAB) at Memorial University. An IMM estimator uses multiple filters that run simultaneously to produce a combined weighted estimation of an observed system’s states. The weights are functions of the likelihood of how well each individual filter matches the current behaviour exhibited by the system. The performance of IMM filtering is evaluated using two different strategies for augmenting the system’s filter banks. The first method uses multiple kinematic models (constant velocity and constant acceleration models) in a mean-shift-based computer vision tracking application. The results of this experiment indicate that the IMM improves tracking performance due to its ability to adapt to the continuously changing motion characteristics of 2D blobs in videos. The second approach uses the same kinematics for each filter; however, the process and sensor noise parameters are tuned differently for each model. This method is tested in INS applications for both an automobile and a skid-steer mobile robot (Seekur Jr). Results show that the method improves INS tracking over single model Extended Kalman Filter (EKF) designs. Furthermore, an augmented state-space model containing skid-steer instantaneous center of rotation (ICR) kinematics is presented for future testing on the Seekur Jr INS. The experimental testbed designed in this thesis work is an operational data acquisition system developed for use with the Seekur Jr robot. The Seekur Jr platform has been Robot Operating System (ROS) enabled with access to data streams from 2D Lidar, 3D nodding Lidar, inertial measurement unit, digital compass, wheel encoder, onboard Global Positioning System (GPS), real-time kinematic (RTK) differential global positioning system (DGPS) ground truth, and vision sensors. The physical setup and data networking aspects of the testbed have been used for validation of an IMM filter presented in this thesis and is fully configured for future multi-model localization experiments of the ISLAB

    A State Estimation Approach for a Skid-Steered Off-Road Mobile Robot

    Get PDF
    This thesis presents a novel state estimation structure, a hybrid extended Kalman filter/Kalman filter developed for a skid-steered, six-wheeled, ARGO® all-terrain vehicle (ATV). The ARGO ATV is a teleoperated unmanned ground vehicle (UGV) custom fitted with an inertial measurement unit, wheel encoders and a GPS. In order to enable the ARGO for autonomous applications, the proposed hybrid EKF/KF state estimator strategy is combined with the vehicle’s sensor measurements to estimate key parameters for the vehicle. Field experiments in this thesis reveal that the proposed estimation structure is able to estimate the position, velocity, orientation, and longitudinal slip of the ARGO with a reasonable amount of accuracy. In addition, the proposed estimation structure is well-suited for online applications and can incorporate offline virtual GPS data to further improve the accuracy of the position estimates. The proposed estimation structure is also capable of estimating the longitudinal slip for every wheel of the ARGO, and the slip results align well with the motion estimate findings

    Design and Motion Planning for a Reconfigurable Robotic Base

    Full text link
    A robotic platform for mobile manipulation needs to satisfy two contradicting requirements for many real-world applications: A compact base is required to navigate through cluttered indoor environments, while the support needs to be large enough to prevent tumbling or tip over, especially during fast manipulation operations with heavy payloads or forceful interaction with the environment. This paper proposes a novel robot design that fulfills both requirements through a versatile footprint. It can reconfigure its footprint to a narrow configuration when navigating through tight spaces and to a wide stance when manipulating heavy objects. Furthermore, its triangular configuration allows for high-precision tasks on uneven ground by preventing support switches. A model predictive control strategy is presented that unifies planning and control for simultaneous navigation, reconfiguration, and manipulation. It converts task-space goals into whole-body motion plans for the new robot. The proposed design has been tested extensively with a hardware prototype. The footprint reconfiguration allows to almost completely remove manipulation-induced vibrations. The control strategy proves effective in both lab experiment and during a real-world construction task.Comment: 8 pages, accepted for RA-L and IROS 202

    Sistemas de suporte à condução autónoma adequados a plataforma robótica 4-wheel skid-steer: percepção, movimento e simulação

    Get PDF
    As competições de robótica móvel desempenham papel preponderante na difusão da ciência e da engenharia ao público em geral. E também um espaço dedicado ao ensaio e comparação de diferentes estratégias e abordagens aos diversos desafios da robótica móvel. Uma das vertentes que tem reunido maior interesse nos promotores deste género de iniciativas e entre o público em geral são as competições de condução autónoma. Tipicamente as Competi¸c˜oes de Condução Autónoma (CCA) tentam reproduzir um ambiente semelhante a uma estrutura rodoviária tradicional, no qual sistemas autónomos deverão dar resposta a um conjunto variado de desafios que vão desde a deteção da faixa de rodagem `a interação com distintos elementos que compõem uma estrutura rodoviária típica, do planeamento trajetórias à localização. O objectivo desta dissertação de mestrado visa documentar o processo de desenho e concepção de uma plataforma robótica móvel do tipo 4-wheel skid-steer para realização de tarefas de condução autónoma em ambiente estruturado numa pista que pretende replicar uma via de circulação automóvel dotada de sinalética básica e alguns obstáculos. Paralelamente, a dissertação pretende também fazer uma análise qualitativa entre o processo de simulação e a sua transposição para uma plataforma robótica física. inferir sobre a diferenças de performance e de comportamento.Mobile robotics competitions play an important role in the diffusion of science and engineering to the general public. It is also a space dedicated to test and compare different strategies and approaches to several challenges of mobile robotics. One of the aspects that has attracted more the interest of promoters for this kind of initiatives and general public is the autonomous driving competitions. Typically, Autonomous Driving Competitions (CCAs) attempt to replicate an environment similar to a traditional road structure, in which autonomous systems should respond to a wide variety of challenges ranging from lane detection to interaction with distinct elements that exist in a typical road structure, from planning trajectories to location. The aim of this master’s thesis is to document the process of designing and endow a 4-wheel skid-steer mobile robotic platform to carry out autonomous driving tasks in a structured environment on a track that intends to replicate a motorized roadway including signs and obstacles. In parallel, the dissertation also intends to make a qualitative analysis between the simulation process and the transposition of the developed algorithm to a physical robotic platform, analysing the differences in performance and behavior

    Control of Outdoor Robots at Higher Speeds on Challenging Terrain

    Get PDF
    This thesis studies the motion control of wheeled mobile robots. Its focus is set on high speed control on challenging terrain. Additionally, it deals with the general problem of path following, as well as path planning and obstacle avoidance in difficult conditions. First, it proposes a heuristic longitudinal control for any wheeled mobile robot, and evaluates it on different kinematic configurations and in different conditions, including laboratory experiments and participation in a robotic competition. Being the focus of the thesis, high speed control on uneven terrain is thoroughly studied, and a novel control law is proposed, based on a new model representation of skid-steered vehicles, and comprising of nonlinear lateral and longitudinal control. The lateral control part is based on the Lyapunov theory, and the convergence of the vehicle to the geometric reference path is proven. The longitudinal control is designed for high speeds, taking actuator saturation and the vehicle properties into account. The complete solution is experimentally tested on two different vehicles on several different terrain types, reaching the speeds of ca. 6 m/s, and compared against two state-of-the-art algorithms. Furthermore, a novel path planning and obstacle avoidance system is proposed, together with an extension of the proposed high speed control, which builds up a navigation system capable of autonomous outdoor person following. This system is experimentally compared against two classical obstacle avoidance methods, and evaluated by following a human jogger in outdoor environments, with both static and dynamic obstacles. All the proposed methods, together with various different state-of-the-art control approaches, are unified into one framework. The proposed framework can be used to control any wheeled mobile robot, both indoors and outdoors, at low or high speeds, avoiding all the obstacles on the way. The entire work is released as open-source software

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    Fault-Tolerant Control of Autonomous Ground Vehicle under Actuator and Sensor

    Get PDF
    Unmanned ground vehicles have a wide range of potential applications including autonomous driving, military surveillance, emergency responses, and agricultural robotics, etc. Since such autonomous vehicles need to operate reliably at all times, despite the possible occurrence of faulty behaviors in some system components, the development of fault-tolerant control schemes is a crucial step in ensuring reliable and safe operations. In this research, a fault-tolerant control scheme is developed for a nonlinear ground vehicle model with possible occurrence of both actuator faults in the form of loss of effectiveness (LOE) and sensor bias faults. Based on the vehicle and fault models under consideration, the unknown fault parameters are estimated online using adaptive estimation methods. The estimated fault parameters are used for accommodating the fault effect to maintain satisfactory control performance even in the presence of faults. Real-time algorithm implementation and demonstration using the Qbot2e ground robot by Quanser are conducted to show the effectiveness of the fault-tolerant control algorithm
    corecore