81 research outputs found

    Autonomous Vehicles

    Get PDF
    This edited volume, Autonomous Vehicles, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of vehicle autonomy. The book comprises nine chapters authored by various researchers and edited by an expert active in the field of study. All chapters are complete in itself but united under a common research study topic. This publication aims to provide a thorough overview of the latest research efforts by international authors, open new possible research paths for further novel developments, and to inspire the younger generations into pursuing relevant academic studies and professional careers within the autonomous vehicle field

    La configuració U-space impacta en la seguretat, capacitat i flexibilitat

    Get PDF
    El present treball de final de grau està enfocat a l'estudi del concepte U-space, els seus actuals i futurs serveis i procediments per a permetre l'accés de UAVs a l'espai aeri de manera segura, eficient i flexible, i l'anàlisi dels resultats de simulacions estudiant com a diferents configuracions de l'espai aeri impacten en la flexibilitat i capacitat del sistemaEl presente trabajo de final de grado está enfocado al estudio del concepto U-space, sus actuales y futuros servicios y procedimientos para permitir el acceso de UAVs al espacio aéreo de forma segura, eficiente y flexible, y el análisis de los resultados de simulaciones estudiando como diferentes configuraciones del espacio aéreo impactan en la flexibilidad y capacidad del sistemaThe present final degree study is focused on the exploration of the U-space concept, its current and future services and procedures to allow the access of UAVs to the airspace in a safe, efficient and flexible way, and the analysis of the results of simulations studying how different airspace configurations impact on the flexibility and capacity of the syste

    Accurate navigation applied to landing maneuvers on mobile platforms for unmanned aerial vehicles

    Get PDF
    Drones are quickly developing worldwide and in Europe in particular. They represent the future of a high percentage of operations that are currently carried out by manned aviation or satellites. Compared to fixed-wing UAVs, rotary wing UAVs have as advantages the hovering, agile maneuvering and vertical take-off and landing capabilities, so that they are currently the most used aerial robotic platforms. In operations from ships and boats, the final approach and the landing maneuver are the phases of the operation that involves a higher risk and where it is required a higher level of precision in the position and velocity estimation, along with a high level of robustness in the operation. In the framework of the EC-SAFEMOBIL and the REAL projects, this thesis is devoted to the development of a guidance and navigation system that allows completing an autonomous mission from the take-off to the landing phase of a rotary-wing UAV (RUAV). More specifically, this thesis is focused on the development of new strategies and algorithms that provide sufficiently accurate motion estimation during the autonomous landing on mobile platforms without using the GNSS constellations. In one hand, for the phases of the flights where it is not required a centimetric accuracy solution, here it is proposed a new navigation approach that extends the current estimation techniques by using the EGNOS integrity information in the sensor fusion filter. This approach allows improving the accuracy of the estimation solution and the safety of the overall system, and also helps the remote pilot to have a more complete awareness of the operation status while flying the UAV In the other hand, for those flight phases where the accuracy is a critical factor in the safety of the operation, this thesis presents a precise navigation system that allows rotary-wing UAVs to approach and land safely on moving platforms, without using GNSS at any stage of the landing maneuver, and with a centimeter-level accuracy and high level of robustness. This system implements a novel concept where the relative position and velocity between the aerial vehicle and the landing platform can be calculated from a radio-beacon system installed in both the UAV and the landing platform or through the angles of a cable that physically connects the UAV and the landing platform. The use of a cable also incorporates several extra benefits, like increasing the precision in the control of the UAV altitude. It also facilitates to center the UAV right on top of the expected landing position and increases the stability of the UAV just after contacting the landing platform. The proposed guidance and navigation systems have been implemented in an unmanned rotorcraft and a large number of tests have been carried out under different conditions for measuring the accuracy and the robustness of the proposed solution. Results showed that the developed system allows landing with centimeter accuracy by using only local sensors and that the UAV is able to follow a mobile landing platform in multiple trajectories at different velocities

    Identification and characterization of traffic flow patterns for UTM application

    Get PDF
    The current airspace has limited resource, and the widespread use of Unmanned Aircraft System (UAS) is increasing the density of civilian aircraft that is already crowded with manned aerial vehicles. This increased density in airspace demands to improve the safety, efficiency and capacity of airspace while considering all uncertain parameters that may cause hinderance in aircraft movement like weather and dynamic fluctuations. A systematic analysis of correlations between events and their impacts in air traffic network is a considerable challenge. This paper proposes a methodology that characterizes and identifies the patterns of Unmanned Traffic Management (UTM) airspace based on the analysis of simulated data to improve the performance of UTM network as well as ensuring its safety and capacity. Some sets of metrics are defined to identify the airspace characteristics that include airspace density, capacity and efficiency. The data analysis carried out here, will support risk analysis and improve trajectory planning in different airspace regions considering all dynamic parameters such as extreme weather conditions, loss of safe distances, UAVs’ performance, emergency services and airspace structures that may cause deviations from their standard paths

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Feasibility of Varying Geo-Fence Around an Unmanned Aircraft Operation Based on Vehicle Performance and Wind

    Get PDF
    Managing trajectory separation is critical to ensuring accessibility, efficiency, and safety in the unmanned airspace. The notion of geo-fences is an emerging concept, where distance buffers enclose individual trajectories and areas of operation in order to manage the airspace. Currently, the Air Traffic Management system for commercial travel defines static distance buffers around the aircraft; however, commercial UASs are envisioned to operate in significantly closer proximity to other UAS requiring a geo-fence for spacing operations. The geo-fence size can be determined based on vehicle performance characteristics, state of the airspace, weather, and other unforeseen events such as emergency or disaster response. Calculation of the geo-fence size could be determined as part of pre-flight planning and during real-time operations. A largely non-homogeneous fleet of UASs will be operating in low altitude and will likely be commercially developed. Due to intellectual property concerns, the operators may not provide detailed specifications of the control system to UTM. In addition, the huge variety of UAS makes modeling each control system prohibitive and flight data for these vehicles may not exist. Therefore, a generalized, simple geo-fence sizing algorithm must be developed such that it does not rely on detailed knowledge of the vehicle control system, accounts for the presence of urban winds, and is sufficiently accurate. In this work, two simple models are investigated to determine its feasibility as an adequate means for calculating the geo-fence size. The vehicle data used in this work are provided by UAS manufactures who have partnered with NASA's UTM project and some publicly available websites. The first model utilizes wind data processed from the NOAA HRRR (Hourly Rapid Refresh) product and Sonar Annemometer data provided by San Jose State. The second model utilizes OpenFOAM which is a CFD code used to generate a wind field for flow around a single building. The key vehicle performance parameters can include UAS response time to disturbances, command to actuation latency, control system rate limits, time to recovery to desired path, and aerodynamics. It was found that the first model provides an initial understanding of geo-fence sizing, but does not provide enough accuracy to provide UTM with an efficient means of scheduling vehicles. The results of the second model reveal that modeling UAS controls systems with a linearized plant and gain scheduled PID controller does not allow capture the UAS flight dynamics within a significant envelope of the wind disturbances

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection
    corecore