84 research outputs found

    Capacity of UAV-Enabled Multicast Channel: Joint Trajectory Design and Power Allocation

    Full text link
    This paper studies an unmanned aerial vehicle (UAV)-enabled multicast channel, in which a UAV serves as a mobile transmitter to deliver common information to a set of KK ground users. We aim to characterize the capacity of this channel over a finite UAV communication period, subject to its maximum speed constraint and an average transmit power constraint. To achieve the capacity, the UAV should use a sufficiently long code that spans over its whole communication period. Accordingly, the multicast channel capacity is achieved via maximizing the minimum achievable time-averaged rates of the KK users, by jointly optimizing the UAV's trajectory and transmit power allocation over time. However, this problem is non-convex and difficult to be solved optimally. To tackle this problem, we first consider a relaxed problem by ignoring the maximum UAV speed constraint, and obtain its globally optimal solution via the Lagrange dual method. The optimal solution reveals that the UAV should hover above a finite number of ground locations, with the optimal hovering duration and transmit power at each location. Next, based on such a multi-location-hovering solution, we present a successive hover-and-fly trajectory design and obtain the corresponding optimal transmit power allocation for the case with the maximum UAV speed constraint. Numerical results show that our proposed joint UAV trajectory and transmit power optimization significantly improves the achievable rate of the UAV-enabled multicast channel, and also greatly outperforms the conventional multicast channel with a fixed-location transmitter.Comment: To appear in the IEEE International Conference on Communications (ICC), 201

    An Overview of Drone Energy Consumption Factors and Models

    Full text link
    At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV's energy consumption as well as an investigation of different energy models
    • …
    corecore