132 research outputs found

    Trajectory Convergence From Coordinate-Wise Decrease of Quadratic Energy Functions, and Applications to Platoons

    Get PDF
    We consider trajectories where the sign of the derivative of each entry is opposite to that of the corresponding entry in the gradient of an energy function. We show that this condition guarantees convergence when the energy function is quadratic and positive definite and partly extend that result to some classes of positive semi-definite quadratic functions including those defined using a graph Laplacian. We show how this condition allows establishing the convergence of a platoon application in which it naturally appears, due to deadzones in the control laws designed to avoid instabilities caused by inconsistent measurements of the same distance by different agents

    Trajectory convergence from coordinate-wise decrease of quadratic energy functions, and applications to platoons

    Get PDF
    We consider trajectories where the sign of the derivative of each entry is opposite to that of the corresponding entry in the gradient of an energy function. We show that this condition guarantees convergence when the energy function is quadratic and positive definite and partly extend that result to some classes of positive semi-definite quadratic functions including those defined using a graph Laplacian. We show how this condition allows establishing the convergence of a platoon application in which it naturally appears, due to deadzones in the control laws designed to avoid instabilities caused by inconsistent measurements of the same distance by different agents

    Optimal scheduling of connected and autonomous vehicles at a reservation-based intersection.

    Get PDF
    Reservation-based intersection control has been evaluated with better performance over traditional signal controls in terms of intersection safety, efficiency, and emission. Controlling connected and autonomous vehicles (CAVs) at a reservation-based intersection in terms of improving intersection efficiency is performed via two factors: trajectory (speed profile) and arrival time of CAVs at the intersection. In an early stage of the reservation-based intersection control, an intersection controller at the intersection may fail to find a feasible solution for both the trajectory and arrival time for a CAV at a certain planning horizon. Leveraging a deeper understanding of the control problem, reservation-based intersection control methods are able to optimize both trajectory and arrival time simultaneously while overcoming the infeasible condition. Furthermore, in order to achieve real-time control at the reservation-based intersection, a scheduling problem of CAV crossing the intersection has been widely modeled to optimize the intersection efficiency. Efficient solution algorithms have been proposed to overcome the curse of dimensionality. However, a control methodology consisting of trajectory planning and arrival time scheduling that can overcome the infeasible condition has not been explicitly explained and defined. Furthermore, an optimal control framework for joint control of the trajectory planning and arrival time scheduling in terms of global intersection efficiency has not been theoretically established and numerically validated; and mechanisms of how to reduce the time complexity meanwhile solving the scheduling problem to an optimal solution are not fully understood and rigorously defined. In this dissertation, a control method that eliminates the infeasible problem at any planning horizon is first explicitly explained and defined based on a time-speed-independent trajectory planning and scheduling model. Secondly, this dissertation theoretically defines the optimal control framework via analyzing various control methods in terms of intersection capacity, throughput and delay. Furthermore, this dissertation theoretically analyzes the mechanism of the scheduling problem and designs an exact algorithm to further reduce the time complexity. Through theoretical analyses of the properties of the scheduling problem, the reasons that the time complexity can be reduced are fundamentally explained. The results first validate that the defined control framework can adapt to extremely high traffic demand scenarios with feasible solutions at any planning horizon for all CAVs. Under extensive sensitivity analyses, the theoretical definition of the optimal control framework is validated in terms of maximizing the intersection efficiency. Moreover, numerical examples validate that a proposed scheduling algorithm finds an optimal solution with lower computation time and time complexity

    Optimal control and approximations

    Get PDF

    Optimal control and approximations

    Get PDF

    Advanced Sensing and Control for Connected and Automated Vehicles

    Get PDF
    Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs

    Information Theory and Cooperative Control in Networked Multi-Agent Systems with Applications to Smart Grid

    Get PDF
    This dissertation focuses on information theoretic aspects of and cooperative control techniques in networked multi-agent systems (NMAS) with communication constraints. In the first part of the dissertation, information theoretic limitations of tracking problems in networked control systems, especially leader-follower systems with communication constraints, are studied. Necessary conditions on the data rate of each communication link for tracking of the leader-follower systems are provided. By considering the forward and feedback channels as one cascade channel, we also provide a lower bound for the data rate of the cascade channel for the system to track a reference signal such that the tracking error has finite second moment. Finally, the aforementioned results are extended to the case in which the leader system and follower system have different system models. In the second part, we propose an easily scalable hierarchical decision-making and control architecture for smart grid with communication constraints in which distributed customers equipped with renewable distributed generation (RDG) interact and trade energy in the grid. We introduce the key components and their interactions in the proposed control architecture and discuss the design of distributed controllers which deal with short-term and long-term grid stability, power load balancing and energy routing. At microgrid level, under the assumption of user cooperation and inter-user communications, we propose a distributed networked control strategy to solve the demand-side management problem in microgrids. Moreover, by considering communication delays between users and microgrid central controller, we propose a distributed networked control strategy with prediction to solve the demand-side management problem with communication delays. In the third part, we consider the disturbance attenuation and stabilization problem in networked control systems. To be specific, we consider the string stability in a large group of interconnected systems over a communication network. Its potential applications could be found in formation tracking control in groups of robots, as well as uncertainty reduction and disturbance attenuation in smart grid. We propose a leader-following consensus protocol for such interconnected systems and derive the sufficient conditions, in terms of communication topology and control parameters, for string stability. Simulation results and performance in terms of disturbance propagation are also given. In the fourth part, we consider distributed tracking and consensus in networked multi-agent systems with noisy time-varying graphs and incomplete data. In particular, a distributed tracking with consensus algorithm is developed for the space-object tracking with a satellite surveillance network. We also intend to investigate the possible application of such methods in smart grid networks. Later, conditions for achieving distributed consensus are discussed and the rate of convergence is quantified for noisy time-varying graphs with incomplete data. We also provide detailed simulation results and performance comparison of the proposed distributed tracking with consensus algorithm in the case of space-object tracking problem and that of distributed local Kalman filtering with centralized fusion and centralized Kalman filter. The information theoretic limitations developed in the first part of this dissertation provide guildlines for design and analysis of tracking problems in networked control systems. The results reveal the mutual interaction and joint application of information theory and control theory in networked control systems. Second, the proposed architectures and approaches enable scalability in smart grid design and allow resource pooling among distributed energy resources (DER) so that the grid stability and optimality is maintained. The proposed distributed networked control strategy with prediction provides an approach for cooperative control at RDG-equipped customers within a self-contained microgrid with different feedback delays. Our string stability analysis in the third part of this dissertation allows a single networked control system to be extended to a large group of interconnected subsystems while system stability is still maintained. It also reveals the disturbance propagation through the network and the effect of disturbance in one subsystem on other subsystems. The proposed leader-following consensus protocol in the constrained communication among users reveals the effect of communication in stabilization of networked control systems and the interaction between communication and control over a network. Finally, the distributed tracking and consensus in networked multi-agent systems problem shows that information sharing among users improves the quality of local estimates and helps avoid conflicting and inefficient distributed decisions. It also reveals the effect of the graph topologies and incomplete node measurements on the speed of achieving distributed decision and final consensus accuracy

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences
    • …
    corecore