66,929 research outputs found

    Training a Binary Weight Object Detector by Knowledge Transfer for Autonomous Driving

    Get PDF
    Autonomous driving has harsh requirements of small model size and energy efficiency, in order to enable the embedded system to achieve real-time on-board object detection. Recent deep convolutional neural network based object detectors have achieved state-of-the-art accuracy. However, such models are trained with numerous parameters and their high computational costs and large storage prohibit the deployment to memory and computation resource limited systems. Low-precision neural networks are popular techniques for reducing the computation requirements and memory footprint. Among them, binary weight neural network (BWN) is the extreme case which quantizes the float-point into just 11 bit. BWNs are difficult to train and suffer from accuracy deprecation due to the extreme low-bit representation. To address this problem, we propose a knowledge transfer (KT) method to aid the training of BWN using a full-precision teacher network. We built DarkNet- and MobileNet-based binary weight YOLO-v2 detectors and conduct experiments on KITTI benchmark for car, pedestrian and cyclist detection. The experimental results show that the proposed method maintains high detection accuracy while reducing the model size of DarkNet-YOLO from 257 MB to 8.8 MB and MobileNet-YOLO from 193 MB to 7.9 MB.Comment: Accepted by ICRA 201

    Cross-domain & In-domain Sentiment Analysis with Memory-based Deep Neural Networks

    Get PDF
    open4noCross-domain sentiment classifiers aim to predict the polarity, namely the sentiment orientation of target text documents, by reusing a knowledge model learned from a different source domain. Distinct domains are typically heterogeneous in language, so that transfer learning techniques are advisable to support knowledge transfer from source to target. Distributed word representations are able to capture hidden word relationships without supervision, even across domains. Deep neural networks with memory (MemDNN) have recently achieved the state-of-the-art performance in several NLP tasks, including cross-domain sentiment classifica- tion of large-scale data. The contribution of this work is the massive experimentations of novel outstanding MemDNN architectures, such as Gated Recurrent Unit (GRU) and Differentiable Neural Computer (DNC) both in cross-domain and in-domain sentiment classification by using the GloVe word embeddings. As far as we know, only GRU neural networks have been applied in cross-domain sentiment classification. Senti- ment classifiers based on these deep learning architectures are also assessed from the viewpoint of scalability and accuracy by gradually increasing the training set size, and showing also the effect of fine-tuning, an ex- plicit transfer learning mechanism, on cross-domain tasks. This work shows that MemDNN based classifiers improve the state-of-the-art on Amazon Reviews corpus with reference to document-level cross-domain sen- timent classification. On the same corpus, DNC outperforms previous approaches in the analysis of a very large in-domain configuration in both binary and fine-grained document sentiment classification. Finally, DNC achieves accuracy comparable with the state-of-the-art approaches on the Stanford Sentiment Treebank dataset in both binary and fine-grained single-sentence sentiment classification.openGianluca Moro, Andrea Pagliarani, Roberto Pasolini, Claudio SartoriGianluca Moro, Andrea Pagliarani, Roberto Pasolini, Claudio Sartor
    corecore