10,112 research outputs found

    Robustness of 3D Deep Learning in an Adversarial Setting

    Full text link
    Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D environments; however, relatively little is known about the robustness of these approaches in an adversarial setting. The lack of comprehensive analysis makes it difficult to justify deployment of 3D deep learning models in real-world, safety-critical applications. In this work, we develop an algorithm for analysis of pointwise robustness of neural networks that operate on 3D data. We show that current approaches presented for understanding the resilience of state-of-the-art models vastly overestimate their robustness. We then use our algorithm to evaluate an array of state-of-the-art models in order to demonstrate their vulnerability to occlusion attacks. We show that, in the worst case, these networks can be reduced to 0% classification accuracy after the occlusion of at most 6.5% of the occupied input space.Comment: 10 pages, 8 figures, 1 tabl

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    Perceptual Generative Adversarial Networks for Small Object Detection

    Full text link
    Detecting small objects is notoriously challenging due to their low resolution and noisy representation. Existing object detection pipelines usually detect small objects through learning representations of all the objects at multiple scales. However, the performance gain of such ad hoc architectures is usually limited to pay off the computational cost. In this work, we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to "super-resolved" ones, achieving similar characteristics as large objects and thus more discriminative for detection. For this purpose, we propose a new Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones. Specifically, its generator learns to transfer perceived poor representations of the small objects to super-resolved ones that are similar enough to real large objects to fool a competing discriminator. Meanwhile its discriminator competes with the generator to identify the generated representation and imposes an additional perceptual requirement - generated representations of small objects must be beneficial for detection purpose - on the generator. Extensive evaluations on the challenging Tsinghua-Tencent 100K and the Caltech benchmark well demonstrate the superiority of Perceptual GAN in detecting small objects, including traffic signs and pedestrians, over well-established state-of-the-arts

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201
    • …
    corecore