53 research outputs found

    Deep autoencoders for acoustic anomaly detection: experiments with working machine and in-vehicle audio

    Get PDF
    The growing usage of digital microphones has generated an increased interest in the topic of Acoustic Anomaly Detection (AAD). Indeed, there are several real-world AAD application domains, including working machines and in-vehicle intelligence (the main target of this research project). This paper introduces three deep AutoEncoders (AE) for unsupervised AAD tasks, namely a Dense AE, a Convolutional Neural Network (CNN) AE and Long Short-Term Memory Autoencoder (LSTM) AE. To tune the deep learning architectures, development data were adopted from public domain audio datasets related with working machines. A large set of computational experiments was held, showing that the three proposed deep autoencoders, when combined with a melspectrogram sound preprocessing, are quite competitive and outperform a recently proposed AE baseline. Next, on a second experimental stage, aiming to address the final in-vehicle passenger safety goal, the three AEs were adapted to learn from in-vehicle normal audio, assuming three realistic scenarios that were generated by a synthetic audio mixture tool. In general, a high quality AAD discrimination was obtained: working machine data - 72% to 91%; and in-vehicle audio - 78% to 81%. In conjunction with an automotive company, an in-vehicle AAD intelligent system prototype was further developed, aiming to test a selected model (LSTM AE) during a pilot demonstration event that targeted the cough anomaly. Interesting results were obtained, with the AAD system presenting a high cough classification accuracy (e.g., 100% for front seat locations).This work is supported by the European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) - Project no 039334; Funding Reference: POCI-01-0247-FEDER-039334

    Prediction and Planning in Dynamical Systems with Underlying Markov Decision Processes

    Get PDF
    Predicting the future state of a scene with moving objects is a task that humans handle with ease. This is due to our understanding about the dynamics of the objects in the scene and the way they interact. However, teaching machines such understanding has always been a challenging task in machine learning. In recent years, with the abundance of data and enormous growth in computational power, there have been an outstanding progress in filling the gap between humans and machines perception and prediction. Deep learning, specifically, has been the main framework to address this problem. Prediction models are not only crucial problems by themselves but also many downstream tasks in machine learning and robotics rely on the quality of output of these models. Model-based control and planning require an accurate modelling of the underlying dynamics of the systems. A common assumption about the underlying dynamics, which is also the main theme of this thesis, is that it can be expressed using Markov Decision Processes (MDPs). However, the major portion of the thesis is dedicated to the problems in which we do not have access to the actual underlying MDP and only observe some high-dimensional observations from the dynamical system. The objective is then to model the underlying dynamics from the data and built a model that can potentially be used for planning and control. We consider both single-agent and multi-agent systems and employ deep generative models for modelling the dynamics. For the single-agent problem we propose a model that maps the high-dimensional observations to a low-dimensional space in which the dynamics of the system is modelled by a locally-linear function. We find this mapping by a proper modelling of the variables using graphical models and show that the mapping is robust against dynamics noise and suitable for control. For the multi-agent problem we provide a formulation that describes the prediction problem in terms of the reaction of the environment to the action of one agent (ego-agent) and show that such formulation can improve the prediction accuracy as well as broaden the range of environment conditions. From a different perspective, we also consider the problem in which we have access to the MDP and would like to obtain the optimal policy. More specifically, given a set of base policies on the MDP, we want to find the best policy in their convex hull. We show that this problem is NP-hard in general and provide an approximating algorithm with linear complexity, which outputs a policy that performs close to the optimal policy. This policy can be found under the condition that base policies have overlap in the occupancy measure space
    • …
    corecore