590 research outputs found

    On Recursive Edit Distance Kernels with Application to Time Series Classification

    Get PDF
    This paper proposes some extensions to the work on kernels dedicated to string or time series global alignment based on the aggregation of scores obtained by local alignments. The extensions we propose allow to construct, from classical recursive definition of elastic distances, recursive edit distance (or time-warp) kernels that are positive definite if some sufficient conditions are satisfied. The sufficient conditions we end-up with are original and weaker than those proposed in earlier works, although a recursive regularizing term is required to get the proof of the positive definiteness as a direct consequence of the Haussler's convolution theorem. The classification experiment we conducted on three classical time warp distances (two of which being metrics), using Support Vector Machine classifier, leads to conclude that, when the pairwise distance matrix obtained from the training data is \textit{far} from definiteness, the positive definite recursive elastic kernels outperform in general the distance substituting kernels for the classical elastic distances we have tested.Comment: 14 page

    Regularized Regression Problem in hyper-RKHS for Learning Kernels

    Full text link
    This paper generalizes the two-stage kernel learning framework, illustrates its utility for kernel learning and out-of-sample extensions, and proves {asymptotic} convergence results for the introduced kernel learning model. Algorithmically, we extend target alignment by hyper-kernels in the two-stage kernel learning framework. The associated kernel learning task is formulated as a regression problem in a hyper-reproducing kernel Hilbert space (hyper-RKHS), i.e., learning on the space of kernels itself. To solve this problem, we present two regression models with bivariate forms in this space, including kernel ridge regression (KRR) and support vector regression (SVR) in the hyper-RKHS. By doing so, it provides significant model flexibility for kernel learning with outstanding performance in real-world applications. Specifically, our kernel learning framework is general, that is, the learned underlying kernel can be positive definite or indefinite, which adapts to various requirements in kernel learning. Theoretically, we study the convergence behavior of these learning algorithms in the hyper-RKHS and derive the learning rates. Different from the traditional approximation analysis in RKHS, our analyses need to consider the non-trivial independence of pairwise samples and the characterisation of hyper-RKHS. To the best of our knowledge, this is the first work in learning theory to study the approximation performance of regularized regression problem in hyper-RKHS.Comment: 25 pages, 3 figure
    • …
    corecore