57 research outputs found

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Connectionist multivariate density-estimation and its application to speech synthesis

    Get PDF
    Autoregressive models factorize a multivariate joint probability distribution into a product of one-dimensional conditional distributions. The variables are assigned an ordering, and the conditional distribution of each variable modelled using all variables preceding it in that ordering as predictors. Calculating normalized probabilities and sampling has polynomial computational complexity under autoregressive models. Moreover, binary autoregressive models based on neural networks obtain statistical performances similar to that of some intractable models, like restricted Boltzmann machines, on several datasets. The use of autoregressive probability density estimators based on neural networks to model real-valued data, while proposed before, has never been properly investigated and reported. In this thesis we extend the formulation of neural autoregressive distribution estimators (NADE) to real-valued data; a model we call the real-valued neural autoregressive density estimator (RNADE). Its statistical performance on several datasets, including visual and auditory data, is reported and compared to that of other models. RNADE obtained higher test likelihoods than other tractable models, while retaining all the attractive computational properties of autoregressive models. However, autoregressive models are limited by the ordering of the variables inherent to their formulation. Marginalization and imputation tasks can only be solved analytically if the missing variables are at the end of the ordering. We present a new training technique that obtains a set of parameters that can be used for any ordering of the variables. By choosing a model with a convenient ordering of the dimensions at test time, it is possible to solve any marginalization and imputation tasks analytically. The same training procedure also makes it practical to train NADEs and RNADEs with several hidden layers. The resulting deep and tractable models display higher test likelihoods than the equivalent one-hidden-layer models for all the datasets tested. Ensembles of NADEs or RNADEs can be created inexpensively by combining models that share their parameters but differ in the ordering of the variables. These ensembles of autoregressive models obtain state-of-the-art statistical performances for several datasets. Finally, we demonstrate the application of RNADE to speech synthesis, and confirm that capturing the phone-conditional dependencies of acoustic features improves the quality of synthetic speech. Our model generates synthetic speech that was judged by naive listeners as being of higher quality than that generated by mixture density networks, which are considered a state-of-the-art synthesis techniqu

    Training deep convolutional architectures for vision

    Get PDF
    Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.High-level vision tasks such as generic object recognition remain out of reach for modern Artificial Intelligence systems. A promising approach involves learning algorithms, such as the Arficial Neural Network (ANN), which automatically learn to extract useful features for the task at hand. For ANNs, this represents a difficult optimization problem however. Deep Belief Networks have thus been proposed as a way to guide the discovery of intermediate representations, through a greedy unsupervised training of stacked Restricted Boltzmann Machines (RBM). The articles presented here-in represent contributions to this field of research. The first article introduces the convolutional RBM. By mimicking local receptive fields and tying the parameters of hidden units within the same feature map, we considerably reduce the number of parameters to learn and enforce local, shift-equivariant feature detectors. This translates to better likelihood scores, compared to RBMs trained on small image patches. In the second article, recent discoveries in neuroscience motivate an investigation into the impact of higher-order units on visual classification, along with the evaluation of a novel activation function. We show that ANNs with quadratic units using the softsign activation function offer better generalization error across several tasks. Finally, the third article gives a critical look at recently proposed RBM training algorithms. We show that Contrastive Divergence (CD) and Persistent CD are brittle in that they require the energy landscape to be smooth in order for their negative chain to mix well. PCD with fast-weights addresses the issue by performing small model perturbations, but may result in spurious samples. We propose using simulated tempering to draw negative samples. This leads to better generative models and increased robustness to various hyperparameters

    Visual scene recognition with biologically relevant generative models

    No full text
    This research focuses on developing visual object categorization methodologies that are based on machine learning techniques and biologically inspired generative models of visual scene recognition. Modelling the statistical variability in visual patterns, in the space of features extracted from them by an appropriate low level signal processing technique, is an important matter of investigation for both humans and machines. To study this problem, we have examined in detail two recent probabilistic models of vision: a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have been widely used for visual object classification and scene analysis tasks before. This research highlights that these models on their own are not plausible enough to perform the classification task, and suggests Fisher kernel as a means of inducing discrimination into these models for classification power. Our empirical results on standard benchmark data sets reveal that the classification performance of these generative models could be significantly boosted near to the state of the art performance, by drawing a Fisher kernel from compact generative models that computes the data labels in a fraction of total computation time. We compare the proposed technique with other distance based and kernel based classifiers to show how computationally efficient the Fisher kernels are. To the best of our knowledge, Fisher kernel has not been drawn from the RBM before, so the work presented in the thesis is novel in terms of its idea and application to vision problem

    A retinal vasculature tracking system guided by a deep architecture

    Get PDF
    Many diseases such as diabetic retinopathy (DR) and cardiovascular diseases show their early signs on retinal vasculature. Analysing the vasculature in fundus images may provide a tool for ophthalmologists to diagnose eye-related diseases and to monitor their progression. These analyses may also facilitate the discovery of new relations between changes on retinal vasculature and the existence or progression of related diseases or to validate present relations. In this thesis, a data driven method, namely a Translational Deep Belief Net (a TDBN), is adapted to vasculature segmentation. The segmentation performance of the TDBN on low resolution images was found to be comparable to that of the best-performing methods. Later, this network is used for the implementation of super-resolution for the segmentation of high resolution images. This approach provided an acceleration during segmentation, which relates to down-sampling ratio of an input fundus image. Finally, the TDBN is extended for the generation of probability maps for the existence of vessel parts, namely vessel interior, centreline, boundary and crossing/bifurcation patterns in centrelines. These probability maps are used to guide a probabilistic vasculature tracking system. Although segmentation can provide vasculature existence in a fundus image, it does not give quantifiable measures for vasculature. The latter has more practical value in medical clinics. In the second half of the thesis, a retinal vasculature tracking system is presented. This system uses Particle Filters to describe vessel morphology and topology. Apart from previous studies, the guidance for tracking is provided with the combination of probability maps generated by the TDBN. The experiments on a publicly available dataset, REVIEW, showed that the consistency of vessel widths predicted by the proposed method was better than that obtained from observers. Moreover, very noisy and low contrast vessel boundaries, which were hardly identifiable to the naked eye, were accurately estimated by the proposed tracking system. Also, bifurcation/crossing locations during the course of tracking were detected almost completely. Considering these promising initial results, future work involves analysing the performance of the tracking system on automatic detection of complete vessel networks in fundus images.Open Acces

    Bidirectional Learning in Recurrent Neural Networks Using Equilibrium Propagation

    Get PDF
    Neurobiologically-plausible learning algorithms for recurrent neural networks that can perform supervised learning are a neglected area of study. Equilibrium propagation is a recent synthesis of several ideas in biological and artificial neural network research that uses a continuous-time, energy-based neural model with a local learning rule. However, despite dealing with recurrent networks, equilibrium propagation has only been applied to discriminative categorization tasks. This thesis generalizes equilibrium propagation to bidirectional learning with asymmetric weights. Simultaneously learning the discriminative as well as generative transformations for a set of data points and their corresponding category labels, bidirectional equilibrium propagation utilizes recurrence and weight asymmetry to share related but non-identical representations within the network. Experiments on an artificial dataset demonstrate the ability to learn both transformations, as well as the ability for asymmetric-weight networks to generalize their discriminative training to the untrained generative task

    Réseaux de neurones génératifs avec structure

    Get PDF
    Cette thèse porte sur les modèles génératifs en apprentissage automatique. Deux nouveaux modèles basés sur les réseaux de neurones y sont proposés. Le premier modèle possède une représentation interne où une certaine structure a été imposée afin d’ordonner les caractéristiques apprises. Le deuxième modèle parvient à exploiter la structure topologique des données observées, et d’en tenir compte lors de la phase générative. Cette thèse présente également une des premières applications de l’apprentissage automatique au problème de la tractographie du cerveau. Pour ce faire, un réseau de neurones récurrent est appliqué à des données de diffusion afin d’obtenir une représentation des fibres de la matière blanche sous forme de séquences de points en trois dimensions

    Learning generative models of mid-level structure in natural images

    Get PDF
    Natural images arise from complicated processes involving many factors of variation. They reflect the wealth of shapes and appearances of objects in our three-dimensional world, but they are also affected by factors such as distortions due to perspective, occlusions, and illumination, giving rise to structure with regularities at many different levels. Prior knowledge about these regularities and suitable representations that allow efficient reasoning about the properties of a visual scene are important for many image processing and computer vision tasks. This thesis focuses on models of image structure at intermediate levels of complexity as required, for instance, for image inpainting or segmentation. It aims at developing generative, probabilistic models of this kind of structure, and, in particular, at devising strategies for learning such models in a largely unsupervised manner from data. One hallmark of natural images is that they can often be decomposed into regions with very different visual characteristics. The main approach of this thesis is therefore to represent images in terms of regions that are characterized by their shapes and appearances, and an image is then composed from many such regions. We explore approaches to learn about the appearance of regions, to learn about region shapes, and ways to combine several regions to form a full image. To achieve this goal, we make use of some ideas for unsupervised learning developed in the literature on models of low-level image structure and in the “deep learning” literature. These models are used as building blocks of more structured model formulations that incorporate additional prior knowledge of how images are formed. The thesis makes the following contributions: Firstly, we investigate a popular, MRF based prior of natural image structure, the Field-of Experts, with respect to its ability to model image textures, and propose an extended formulation that is considerably more successful at this task. This formulation gives rise to a fully parametric, translation-invariant probabilistic generative model of image textures. We illustrate how this model can be used as a component of a more comprehensive model of images comprising multiple textured regions. Secondly, we develop a model of region shape. This work is an extension of the “Masked Restricted Boltzmann Machine” proposed by Le Roux et al. (2011) and it allows explicit reasoning about the independent shapes and relative depths of occluding objects. We develop an inference and unsupervised learning scheme and demonstrate how this shape model, in combination with the masked RBM gives rise to a good model of natural image patches. Finally, we demonstrate how this model of region shape can be extended to model shapes in large images. The result is a generative model of large images which are formed by composition from many small, partially overlapping and occluding objects
    corecore