1,141 research outputs found

    Training Probabilistic Spiking Neural Networks with First-to-spike Decoding

    Full text link
    Third-generation neural networks, or Spiking Neural Networks (SNNs), aim at harnessing the energy efficiency of spike-domain processing by building on computing elements that operate on, and exchange, spikes. In this paper, the problem of training a two-layer SNN is studied for the purpose of classification, under a Generalized Linear Model (GLM) probabilistic neural model that was previously considered within the computational neuroscience literature. Conventional classification rules for SNNs operate offline based on the number of output spikes at each output neuron. In contrast, a novel training method is proposed here for a first-to-spike decoding rule, whereby the SNN can perform an early classification decision once spike firing is detected at an output neuron. Numerical results bring insights into the optimal parameter selection for the GLM neuron and on the accuracy-complexity trade-off performance of conventional and first-to-spike decoding.Comment: A shorter version will be published on Proc. IEEE ICASSP 201

    Probabilistic spiking neural networks : Supervised, unsupervised and adversarial trainings

    Get PDF
    Spiking Neural Networks (SNNs), or third-generation neural networks, are networks of computation units, called neurons, in which each neuron with internal analogue dynamics receives as input and produces as output spiking, that is, binary sparse, signals. In contrast, second-generation neural networks, termed as Artificial Neural Networks (ANNs), rely on simple static non-linear neurons that are known to be energy-intensive, hindering their implementations on energy-limited processors such as mobile devices. The sparse event-based characteristics of SNNs for information transmission and encoding have made them more feasible for highly energy-efficient neuromorphic computing architectures. The most existing training algorithms for SNNs are based on deterministic spiking neurons that limit their flexibility and expressive power. Moreover, the SNNs are typically trained based on the back-propagation method, which unlike ANNs, it becomes challenging due to the non-differentiability nature of the spike dynamics. Considering these two key issues, this dissertation is devoted to develop probabilistic frameworks for SNNs that are tailored to the solution of supervised and unsupervised cognitive tasks. The SNNs utilize rich model, flexible and computationally tractable properties of Generalized Linear Model (GLM) neuron. The GLM is a probabilistic neural model that was previously considered within the computational neuroscience literature. A novel training method is proposed for the purpose of classification with a first-to-spike decoding rule, whereby the SNN can perform an early classification decision once spike firing is detected at an output neuron. This method is in contrast with conventional classification rules for SNNs that operate offline based on the number of output spikes at each output neuron. As a result, the proposed method improves the accuracy-inference complexity trade-off with respect to conventional decoding. For the first time in the field, the sensitivity of SNNs trained via Maximum Likelihood (ML) is studied under white-box adversarial attacks. Rate and time encoding, as well as rate and first-to-spike decoding, are considered. Furthermore, a robust training mechanism is proposed that is demonstrated to enhance the resilience of SNNs under adversarial examples. Finally, unsupervised training task for probabilistic SNNs is studied. Under generative model framework, multi-layers SNNs are designed for both encoding and generative parts. In order to train the Variational Autoencoders (VAEs), the standard ML approach is considered. To tackle the intractable inference part, variational learning approaches including doubly stochastic gradient learning, Maximum A Posterior (MAP)-based, and Rao-Blackwellization (RB)-based are considered. The latter is referred as the Hybrid Stochastic-MAP Variational Learning (HSM-VL) scheme. The numerical results show performance improvements using the HSM-VL method compared to the other two training schemes

    Learning First-to-Spike Policies for Neuromorphic Control Using Policy Gradients

    Full text link
    Artificial Neural Networks (ANNs) are currently being used as function approximators in many state-of-the-art Reinforcement Learning (RL) algorithms. Spiking Neural Networks (SNNs) have been shown to drastically reduce the energy consumption of ANNs by encoding information in sparse temporal binary spike streams, hence emulating the communication mechanism of biological neurons. Due to their low energy consumption, SNNs are considered to be important candidates as co-processors to be implemented in mobile devices. In this work, the use of SNNs as stochastic policies is explored under an energy-efficient first-to-spike action rule, whereby the action taken by the RL agent is determined by the occurrence of the first spike among the output neurons. A policy gradient-based algorithm is derived considering a Generalized Linear Model (GLM) for spiking neurons. Experimental results demonstrate the capability of online trained SNNs as stochastic policies to gracefully trade energy consumption, as measured by the number of spikes, and control performance. Significant gains are shown as compared to the standard approach of converting an offline trained ANN into an SNN.Comment: Submitted for conference publicatio

    Training Dynamic Exponential Family Models with Causal and Lateral Dependencies for Generalized Neuromorphic Computing

    Full text link
    Neuromorphic hardware platforms, such as Intel's Loihi chip, support the implementation of Spiking Neural Networks (SNNs) as an energy-efficient alternative to Artificial Neural Networks (ANNs). SNNs are networks of neurons with internal analogue dynamics that communicate by means of binary time series. In this work, a probabilistic model is introduced for a generalized set-up in which the synaptic time series can take values in an arbitrary alphabet and are characterized by both causal and instantaneous statistical dependencies. The model, which can be considered as an extension of exponential family harmoniums to time series, is introduced by means of a hybrid directed-undirected graphical representation. Furthermore, distributed learning rules are derived for Maximum Likelihood and Bayesian criteria under the assumption of fully observed time series in the training set.Comment: Published in IEEE ICASSP 2019. Author's Accepted Manuscrip

    Local learning algorithms for stochastic spiking neural networks

    Get PDF
    This dissertation focuses on the development of machine learning algorithms for spiking neural networks, with an emphasis on local three-factor learning rules that are in keeping with the constraints imposed by current neuromorphic hardware. Spiking neural networks (SNNs) are an alternative to artificial neural networks (ANNs) that follow a similar graphical structure but use a processing paradigm more closely modeled after the biological brain in an effort to harness its low power processing capability. SNNs use an event based processing scheme which leads to significant power savings when implemented in dedicated neuromorphic hardware such as Intel’s Loihi chip. This work is distinguished by the consideration of stochastic SNNs based on spiking neurons that employ a stochastic spiking process, implementing generalized linear models (GLM) rather than deterministic thresholded spiking. In this framework, the spiking signals are random variables which may be sampled from a distribution defined by the neurons. The spiking signals may be observed or latent variables, with neurons whose outputs are observed termed visible neurons and otherwise termed hidden neurons. This choice provides a strong mathematical basis for maximum likelihood optimization of the network parameters via stochastic gradient descent, avoiding the issue of gradient backpropagation through the discontinuity created by the spiking process. Three machine learning algorithms are developed for stochastic SNNs with a focus on power efficiency, learning efficiency and model adaptability; characteristics that are valuable in resource constrained settings. They are studied in the context of applications where low power learning on the edge is key. All of the learning rules that are derived include only local variables along with a global learning signal, making these algorithms tractable to implementation in current neuromorphic hardware. First, a stochastic SNN that includes only visible neurons, the simplest case for probabilistic optimization, is considered. A policy gradient reinforcement learning (RL) algorithm is developed in which the stochastic SNN defines the policy, or state-action distribution, of an RL agent. Action choices are sampled directly from the policy by interpreting the outputs of the read-out neurons using a first to spike decision rule. This study highlights the power efficiency of the SNN in terms of spike frequency. Next, an online meta-learning framework is proposed with the goal of progressively improving the learning efficiency of an SNN over a stream of tasks. In this setting, SNNs including both hidden and visible neurons are considered, posing a more complex maximum likelihood learning problem that is solved using a variational learning method. The meta-learning rule yields a hyperparameter initialization for SNN models that supports fast adaptation of the model to individualized data on edge devices. Finally, moving away from the supervised learning paradigm, a hybrid adver-sarial training framework for SNNs, termed SpikeGAN, is developed. Rather than optimize for the likelihood of target spike patterns at the SNN outputs, the training is mediated by an auxiliary discriminator that provides a measure of how similar the spiking data is to a target distribution. Because no direct spiking patterns are given, the SNNs considered in adversarial learning include only hidden neurons. A Bayesian adaptation of the SpikeGAN learning rule is developed to broaden the range of temporal data that a single SpikeGAN can estimate. Additionally, the online meta-learning rule is extended to include meta-learning for SpikeGAN, to enable efficient generation of data from sequential data distributions

    Adversarial Training for Probabilistic Spiking Neural Networks

    Full text link
    Classifiers trained using conventional empirical risk minimization or maximum likelihood methods are known to suffer dramatic performance degradations when tested over examples adversarially selected based on knowledge of the classifier's decision rule. Due to the prominence of Artificial Neural Networks (ANNs) as classifiers, their sensitivity to adversarial examples, as well as robust training schemes, have been recently the subject of intense investigation. In this paper, for the first time, the sensitivity of spiking neural networks (SNNs), or third-generation neural networks, to adversarial examples is studied. The study considers rate and time encoding, as well as rate and first-to-spike decoding. Furthermore, a robust training mechanism is proposed that is demonstrated to enhance the performance of SNNs under white-box attacks.Comment: Submitted for possible publication. arXiv admin note: text overlap with arXiv:1710.1070
    • …
    corecore