289 research outputs found

    Reinforcement Learning: A Survey

    Full text link
    This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file

    Evolving Neural Networks for the Capture Game

    Get PDF
    Postprin

    Warm-Start AlphaZero Self-Play Search Enhancements

    Get PDF
    Recently, AlphaZero has achieved landmark results in deep reinforcement learning, by providing a single self-play architecture that learned three different games at super human level. AlphaZero is a large and complicated system with many parameters, and success requires much compute power and fine-tuning. Reproducing results in other games is a challenge, and many researchers are looking for ways to improve results while reducing computational demands. AlphaZero's design is purely based on self-play and makes no use of labeled expert data ordomain specific enhancements; it is designed to learn from scratch. We propose a novel approach to deal with this cold-start problem by employing simple search enhancements at the beginning phase of self-play training, namely Rollout, Rapid Action Value Estimate (RAVE) and dynamically weighted combinations of these with the neural network, and Rolling Horizon Evolutionary Algorithms (RHEA). Our experiments indicate that most of these enhancements improve the performance of their baseline player in three different (small) board games, with especially RAVE based variants playing strongly

    Learning to Search in Reinforcement Learning

    Get PDF
    In this thesis, we investigate the use of search based algorithms with deep neural networks to tackle a wide range of problems ranging from board games to video games and beyond. Drawing inspiration from AlphaGo, the first computer program to achieve superhuman performance in the game of Go, we developed a new algorithm AlphaZero. AlphaZero is a general reinforcement learning algorithm that combines deep neural networks with a Monte Carlo Tree search for planning and learning. Starting completely from scratch, without any prior human knowledge beyond the basic rules of the game, AlphaZero managed to achieve superhuman performance in Go, chess and shogi. Subsequently, building upon the success of AlphaZero, we investigated ways to extend our methods to problems in which the rules are not known or cannot be hand-coded. This line of work led to the development of MuZero, a model-based reinforcement learning agent that builds a deterministic internal model of the world and uses it to construct plans in its imagination. We applied our method to Go, chess, shogi and the classic Atari suite of video-games, achieving superhuman performance. MuZero is the first RL algorithm to master a variety of both canonical challenges for high performance planning and visually complex problems using the same principles. Finally, we describe Stochastic MuZero, a general agent that extends the applicability of MuZero to highly stochastic environments. We show that our method achieves superhuman performance in stochastic domains such as backgammon and the classic game of 2048 while matching the performance of MuZero in deterministic ones like Go

    A Neural Networks Committee for the Contextual Bandit Problem

    Get PDF
    This paper presents a new contextual bandit algorithm, NeuralBandit, which does not need hypothesis on stationarity of contexts and rewards. Several neural networks are trained to modelize the value of rewards knowing the context. Two variants, based on multi-experts approach, are proposed to choose online the parameters of multi-layer perceptrons. The proposed algorithms are successfully tested on a large dataset with and without stationarity of rewards.Comment: 21st International Conference on Neural Information Processin
    • 

    corecore