384 research outputs found

    Training large-scale ANNs on simulated resistive crossbar arrays

    Full text link
    Accelerating training of artificial neural networks (ANN) with analog resistive crossbar arrays is a promising idea. While the concept has been verified on very small ANNs and toy data sets (such as MNIST), more realistically sized ANNs and datasets have not yet been tackled. However, it is to be expected that device materials and hardware design constraints, such as noisy computations, finite number of resistive states of the device materials, saturating weight and activation ranges, and limited precision of analog-to-digital converters, will cause significant challenges to the successful training of state-of-the-art ANNs. By using analog hardware aware ANN training simulations, we here explore a number of simple algorithmic compensatory measures to cope with analog noise and limited weight and output ranges and resolutions, that dramatically improve the simulated training performances on RPU arrays on intermediately to large-scale ANNs

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    An On-chip Trainable and Clock-less Spiking Neural Network with 1R Memristive Synapses

    Full text link
    Spiking neural networks (SNNs) are being explored in an attempt to mimic brain's capability to learn and recognize at low power. Crossbar architecture with highly scalable Resistive RAM or RRAM array serving as synaptic weights and neuronal drivers in the periphery is an attractive option for SNN. Recognition (akin to reading the synaptic weight) requires small amplitude bias applied across the RRAM to minimize conductance change. Learning (akin to writing or updating the synaptic weight) requires large amplitude bias pulses to produce a conductance change. The contradictory bias amplitude requirement to perform reading and writing simultaneously and asynchronously, akin to biology, is a major challenge. Solutions suggested in the literature rely on time-division-multiplexing of read and write operations based on clocks, or approximations ignoring the reading when coincidental with writing. In this work, we overcome this challenge and present a clock-less approach wherein reading and writing are performed in different frequency domains. This enables learning and recognition simultaneously on an SNN. We validate our scheme in SPICE circuit simulator by translating a two-layered feed-forward Iris classifying SNN to demonstrate software-equivalent performance. The system performance is not adversely affected by a voltage dependence of conductance in realistic RRAMs, despite departing from linearity. Overall, our approach enables direct implementation of biological SNN algorithms in hardware

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Spatio-temporal Learning with Arrays of Analog Nanosynapses

    Full text link
    Emerging nanodevices such as resistive memories are being considered for hardware realizations of a variety of artificial neural networks (ANNs), including highly promising online variants of the learning approaches known as reservoir computing (RC) and the extreme learning machine (ELM). We propose an RC/ELM inspired learning system built with nanosynapses that performs both on-chip projection and regression operations. To address time-dynamic tasks, the hidden neurons of our system perform spatio-temporal integration and can be further enhanced with variable sampling or multiple activation windows. We detail the system and show its use in conjunction with a highly analog nanosynapse device on a standard task with intrinsic timing dynamics- the TI-46 battery of spoken digits. The system achieves nearly perfect (99%) accuracy at sufficient hidden layer size, which compares favorably with software results. In addition, the model is extended to a larger dataset, the MNIST database of handwritten digits. By translating the database into the time domain and using variable integration windows, up to 95% classification accuracy is achieved. In addition to an intrinsically low-power programming style, the proposed architecture learns very quickly and can easily be converted into a spiking system with negligible loss in performance- all features that confer significant energy efficiency.Comment: 6 pages, 3 figures. Presented at 2017 IEEE/ACM Symposium on Nanoscale architectures (NANOARCH

    Memristive crossbars as hardware accelerators: modelling, design and new uses

    Get PDF
    Digital electronics has given rise to reliable, affordable, and scalable computing devices. However, new computing paradigms present challenges. For example, machine learning requires repeatedly processing large amounts of data; this creates a bottleneck in conventional computers, where computing and memory are separated. To add to that, Moore’s “law” is plateauing and is thus unlikely to address the increasing demand for computational power. In-memory computing, and specifically hardware accelerators for linear algebra, may address both of these issues. Memristive crossbar arrays are a promising candidate for such hardware accelerators. Memristive devices are fast, energy-efficient, and—when arranged in a crossbar structure—can compute vector-matrix products. Unfortunately, they come with their own set of limitations. The analogue nature of these devices makes them stochastic and thus less reliable compared to digital devices. It does not, however, necessarily make them unsuitable for computing. Nevertheless, successful deployment of analogue hardware accelerators requires a proper understanding of their drawbacks, ways of mitigating the effects of undesired physical behaviour, and applications where some degree of stochasticity is tolerable. In this thesis, I investigate the effects of nonidealities in memristive crossbar arrays, introduce techniques of minimising those negative effects, and present novel crossbar circuit designs for new applications. I mostly focus on physical implementations of neural networks and investigate the influence of device nonidealities on classification accuracy. To make memristive neural networks more reliable, I explore committee machines, rearrangement of crossbar lines, nonideality-aware training, and other techniques. I find that they all may contribute to the higher accuracy of physically implemented neural networks, often comparable to the accuracy of their digital counterparts. Finally, I introduce circuits that extend dot product computations to higher-rank arrays, different linear algebra operations, and quaternion vectors and matrices. These present opportunities for using crossbar arrays in new ways, including the processing of coloured images
    corecore