361 research outputs found

    Training feedforward neural networks using orthogonal iteration of the Hessian eigenvectors

    Get PDF
    Introduction Training algorithms for Multilayer Perceptrons optimize the set of W weights and biases, w, so as to minimize an error function, E, applied to a set of N training patterns. The well-known back propagation algorithm combines an efficient method of estimating the gradient of the error function in weight space, DE=g, with a simple gradient descent procedure to adjust the weights, Dw = -hg. More efficient algorithms maintain the gradient estimation procedure, but replace the update step with a faster non-linear optimization strategy [1]. Efficient non-linear optimization algorithms are based upon second order approximation [2]. When sufficiently close to a minimum the error surface is approximately quadratic, the shape being determined by the Hessian matrix. Bishop [1] presents a detailed discussion of the properties and significance of the Hessian matrix. In principle, if sufficiently close to a minimum it is possible to move directly to the minimum using the Newton step, -H-1g. In practice, the Newton step is not used as H-1 is very expensive to evaluate; in addition, when not sufficiently close to a minimum, the Newton step may cause a disastrously poor step to be taken. Second order algorithms either build up an approximation to H-1, or construct a search strategy that implicitly exploits its structure without evaluating it; they also either take precautions to prevent steps that lead to a deterioration in error, or explicitly reject such steps. In applying non-linear optimization algorithms to neural networks, a key consideration is the high-dimensional nature of the search space. Neural networks with thousands of weights are not uncommon. Some algorithms have O(W2) or O(W3) memory or execution times, and are hence impracticable in such cases. It is desirable to identify algorithms that have limited memory requirements, particularly algorithms where one may trade memory usage against convergence speed. The paper describes a new training algorithm that has scalable memory requirements, which may range from O(W) to O(W2), although in practice the useful range is limited to lower complexity levels. The algorithm is based upon a novel iterative estimation of the principal eigen-subspace of the Hessian, together with a quadratic step estimation procedure. It is shown that the new algorithm has convergence time comparable to conjugate gradient descent, and may be preferable if early stopping is used as it converges more quickly during the initial phases. Section 2 overviews the principles of second order training algorithms. Section 3 introduces the new algorithm. Second 4 discusses some experiments to confirm the algorithm's performance; section 5 concludes the paper

    Identifying and attacking the saddle point problem in high-dimensional non-convex optimization

    Full text link
    A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for these local methods to find the global minimum is the proliferation of local minima with much higher error than the global minimum. Here we argue, based on results from statistical physics, random matrix theory, neural network theory, and empirical evidence, that a deeper and more profound difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest. Such saddle points are surrounded by high error plateaus that can dramatically slow down learning, and give the illusory impression of the existence of a local minimum. Motivated by these arguments, we propose a new approach to second-order optimization, the saddle-free Newton method, that can rapidly escape high dimensional saddle points, unlike gradient descent and quasi-Newton methods. We apply this algorithm to deep or recurrent neural network training, and provide numerical evidence for its superior optimization performance.Comment: The theoretical review and analysis in this article draw heavily from arXiv:1405.4604 [cs.LG

    Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

    Full text link
    Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We show that deep linear networks exhibit nonlinear learning phenomena similar to those seen in simulations of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions, and faster convergence from greedy unsupervised pretraining initial conditions than from random initial conditions. We provide an analytical description of these phenomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our theoretical analysis also reveals the surprising finding that as the depth of a network approaches infinity, learning speed can nevertheless remain finite: for a special class of initial conditions on the weights, very deep networks incur only a finite, depth independent, delay in learning speed relative to shallow networks. We show that, under certain conditions on the training data, unsupervised pretraining can find this special class of initial conditions, while scaled random Gaussian initializations cannot. We further exhibit a new class of random orthogonal initial conditions on weights that, like unsupervised pre-training, enjoys depth independent learning times. We further show that these initial conditions also lead to faithful propagation of gradients even in deep nonlinear networks, as long as they operate in a special regime known as the edge of chaos.Comment: Submission to ICLR2014. Revised based on reviewer feedbac

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Orthogonal SVD Covariance Conditioning and Latent Disentanglement

    Full text link
    Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned, which could harm the model in the training stability and generalization abilities. In this paper, we systematically study how to improve the covariance conditioning by enforcing orthogonality to the Pre-SVD layer. Existing orthogonal treatments on the weights are first investigated. However, these techniques can improve the conditioning but would hurt the performance. To avoid such a side effect, we propose the Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR). The effectiveness of our methods is validated in two applications: decorrelated Batch Normalization (BN) and Global Covariance Pooling (GCP). Extensive experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization. The combinations with orthogonal weight can further boost the performance. Moreover, we show that our orthogonality techniques can benefit generative models for better latent disentanglement through a series of experiments on various benchmarks. Code is available at: \href{https://github.com/KingJamesSong/OrthoImproveCond}{https://github.com/KingJamesSong/OrthoImproveCond}.Comment: Accepted by IEEE T-PAMI. arXiv admin note: substantial text overlap with arXiv:2207.0211
    • ā€¦
    corecore