3,560 research outputs found

    Training Deep Neural Networks on Noisy Labels with Bootstrapping

    Full text link
    Current state-of-the-art deep learning systems for visual object recognition and detection use purely supervised training with regularization such as dropout to avoid overfitting. The performance depends critically on the amount of labeled examples, and in current practice the labels are assumed to be unambiguous and accurate. However, this assumption often does not hold; e.g. in recognition, class labels may be missing; in detection, objects in the image may not be localized; and in general, the labeling may be subjective. In this work we propose a generic way to handle noisy and incomplete labeling by augmenting the prediction objective with a notion of consistency. We consider a prediction consistent if the same prediction is made given similar percepts, where the notion of similarity is between deep network features computed from the input data. In experiments we demonstrate that our approach yields substantial robustness to label noise on several datasets. On MNIST handwritten digits, we show that our model is robust to label corruption. On the Toronto Face Database, we show that our model handles well the case of subjective labels in emotion recognition, achieving state-of-the- art results, and can also benefit from unlabeled face images with no modification to our method. On the ILSVRC2014 detection challenge data, we show that our approach extends to very deep networks, high resolution images and structured outputs, and results in improved scalable detection

    Bootstrapping Deep Neural Networks from Approximate Image Processing Pipelines

    Full text link
    Complex image processing and computer vision systems often consist of a processing pipeline of functional modules. We intend to replace parts or all of a target pipeline with deep neural networks to achieve benefits such as increased accuracy or reduced computational requirement. To acquire a large amount of labeled data necessary to train the deep neural network, we propose a workflow that leverages the target pipeline to create a significantly larger labeled training set automatically, without prior domain knowledge of the target pipeline. We show experimentally that despite the noise introduced by automated labeling and only using a very small initially labeled data set, the trained deep neural networks can achieve similar or even better performance than the components they replace, while in some cases also reducing computational requirements.Comment: 6 pages, 5 figure

    Unsupervised Label Noise Modeling and Loss Correction

    Full text link
    Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fit the former before the latter. This suggests using a suitable two-component mixture model as an unsupervised generative model of sample loss values during training to allow online estimation of the probability that a sample is mislabelled. Specifically, we propose a beta mixture to estimate this probability and correct the loss by relying on the network prediction (the so-called bootstrapping loss). We further adapt mixup augmentation to drive our approach a step further. Experiments on CIFAR-10/100 and TinyImageNet demonstrate a robustness to label noise that substantially outperforms recent state-of-the-art. Source code is available at https://git.io/fjsvEComment: Accepted to ICML 201

    A Light CNN for Deep Face Representation with Noisy Labels

    Full text link
    The volume of convolutional neural network (CNN) models proposed for face recognition has been continuously growing larger to better fit large amount of training data. When training data are obtained from internet, the labels are likely to be ambiguous and inaccurate. This paper presents a Light CNN framework to learn a compact embedding on the large-scale face data with massive noisy labels. First, we introduce a variation of maxout activation, called Max-Feature-Map (MFM), into each convolutional layer of CNN. Different from maxout activation that uses many feature maps to linearly approximate an arbitrary convex activation function, MFM does so via a competitive relationship. MFM can not only separate noisy and informative signals but also play the role of feature selection between two feature maps. Second, three networks are carefully designed to obtain better performance meanwhile reducing the number of parameters and computational costs. Lastly, a semantic bootstrapping method is proposed to make the prediction of the networks more consistent with noisy labels. Experimental results show that the proposed framework can utilize large-scale noisy data to learn a Light model that is efficient in computational costs and storage spaces. The learned single network with a 256-D representation achieves state-of-the-art results on various face benchmarks without fine-tuning. The code is released on https://github.com/AlfredXiangWu/LightCNN.Comment: arXiv admin note: text overlap with arXiv:1507.04844. The models are released on https://github.com/AlfredXiangWu/LightCNN, IEEE Transactions on Information Forensics and Security, 201

    Learning Deep Networks from Noisy Labels with Dropout Regularization

    Full text link
    Large datasets often have unreliable labels-such as those obtained from Amazon's Mechanical Turk or social media platforms-and classifiers trained on mislabeled datasets often exhibit poor performance. We present a simple, effective technique for accounting for label noise when training deep neural networks. We augment a standard deep network with a softmax layer that models the label noise statistics. Then, we train the deep network and noise model jointly via end-to-end stochastic gradient descent on the (perhaps mislabeled) dataset. The augmented model is overdetermined, so in order to encourage the learning of a non-trivial noise model, we apply dropout regularization to the weights of the noise model during training. Numerical experiments on noisy versions of the CIFAR-10 and MNIST datasets show that the proposed dropout technique outperforms state-of-the-art methods.Comment: Published at 2016 IEEE 16th International Conference on Data Minin

    Limited Gradient Descent: Learning With Noisy Labels

    Full text link
    Label noise may affect the generalization of classifiers, and the effective learning of main patterns from samples with noisy labels is an important challenge. Recent studies have shown that deep neural networks tend to prioritize the learning of simple patterns over the memorization of noise patterns. This suggests a possible method to search for the best generalization that learns the main pattern until the noise begins to be memorized. Traditional approaches often employ a clean validation set to find the best stop timing of learning, i.e., early stopping. However, the generalization performance of such methods relies on the quality of validation sets. Further, in practice, a clean validation set is sometimes difficult to obtain. To solve this problem, we propose a method that can estimate the optimal stopping timing without a clean validation set, called limited gradient descent. We modified the labels of a few samples in a noisy dataset to obtain false labels and to create a reverse pattern. By monitoring the learning progress of the noisy and reverse samples, we can determine the stop timing of learning. In this paper, we also theoretically provide some necessary conditions on learning with noisy labels. Experimental results on CIFAR-10 and CIFAR-100 datasets demonstrate that our approach has a comparable generalization performance to methods relying on a clean validation set. Thus, on the noisy Clothing-1M dataset, our approach surpasses methods that rely on a clean validation set

    Safeguarded Dynamic Label Regression for Generalized Noisy Supervision

    Full text link
    Learning with noisy labels, which aims to reduce expensive labors on accurate annotations, has become imperative in the Big Data era. Previous noise transition based method has achieved promising results and presented a theoretical guarantee on performance in the case of class-conditional noise. However, this type of approaches critically depend on an accurate pre-estimation of the noise transition, which is usually impractical. Subsequent improvement adapts the pre-estimation along with the training progress via a Softmax layer. However, the parameters in the Softmax layer are highly tweaked for the fragile performance due to the ill-posed stochastic approximation. To address these issues, we propose a Latent Class-Conditional Noise model (LCCN) that naturally embeds the noise transition under a Bayesian framework. By projecting the noise transition into a Dirichlet-distributed space, the learning is constrained on a simplex based on the whole dataset, instead of some ad-hoc parametric space. We then deduce a dynamic label regression method for LCCN to iteratively infer the latent labels, to stochastically train the classifier and to model the noise. Our approach safeguards the bounded update of the noise transition, which avoids previous arbitrarily tuning via a batch of samples. We further generalize LCCN for open-set noisy labels and the semi-supervised setting. We perform extensive experiments with the controllable noise data sets, CIFAR-10 and CIFAR-100, and the agnostic noise data sets, Clothing1M and WebVision17. The experimental results have demonstrated that the proposed model outperforms several state-of-the-art methods.Comment: Submitted to Transactions on Image Processin

    Derivative Manipulation for General Example Weighting

    Full text link
    Real-world large-scale datasets usually contain noisy labels and are imbalanced. Therefore, we propose derivative manipulation (DM), a novel and general example weighting approach for training robust deep models under these adverse conditions. DM has two main merits. First, loss function and example weighting are common techniques in the literature. DM reveals their connection (a loss function does example weighting) and is a replacement of both. Second, despite that a loss defines an example weighting scheme by its derivative, in the loss design, we need to consider whether it is differentiable. Instead, DM is more flexible by directly modifying the derivative so that a loss can be a non-elementary format too. Technically, DM defines an emphasis density function by a derivative magnitude function. DM is generic in that diverse weighting schemes can be derived. Extensive experiments on both vision and language tasks prove DM's effectiveness

    Decoupling "when to update" from "how to update"

    Full text link
    Deep learning requires data. A useful approach to obtain data is to be creative and mine data from various sources, that were created for different purposes. Unfortunately, this approach often leads to noisy labels. In this paper, we propose a meta algorithm for tackling the noisy labels problem. The key idea is to decouple "when to update" from "how to update". We demonstrate the effectiveness of our algorithm by mining data for gender classification by combining the Labeled Faces in the Wild (LFW) face recognition dataset with a textual genderizing service, which leads to a noisy dataset. While our approach is very simple to implement, it leads to state-of-the-art results. We analyze some convergence properties of the proposed algorithm

    Self-supervised Transfer Learning for Instance Segmentation through Physical Interaction

    Full text link
    Instance segmentation of unknown objects from images is regarded as relevant for several robot skills including grasping, tracking and object sorting. Recent results in computer vision have shown that large hand-labeled datasets enable high segmentation performance. To overcome the time-consuming process of manually labeling data for new environments, we present a transfer learning approach for robots that learn to segment objects by interacting with their environment in a self-supervised manner. Our robot pushes unknown objects on a table and uses information from optical flow to create training labels in the form of object masks. To achieve this, we fine-tune an existing DeepMask network for instance segmentation on the self-labeled training data acquired by the robot. We evaluate our trained network (SelfDeepMask) on a set of real images showing challenging and cluttered scenes with novel objects. Here, SelfDeepMask outperforms the DeepMask network trained on the COCO dataset by 9.5% in average precision. Furthermore, we combine our approach with recent approaches for training with noisy labels in order to better cope with induced label noise.Comment: Extended version and code release of accepted IROS 2019 pape
    • …
    corecore