117,856 research outputs found

    Adversarial Data Programming: Using GANs to Relax the Bottleneck of Curated Labeled Data

    Full text link
    Paucity of large curated hand-labeled training data for every domain-of-interest forms a major bottleneck in the deployment of machine learning models in computer vision and other fields. Recent work (Data Programming) has shown how distant supervision signals in the form of labeling functions can be used to obtain labels for given data in near-constant time. In this work, we present Adversarial Data Programming (ADP), which presents an adversarial methodology to generate data as well as a curated aggregated label has given a set of weak labeling functions. We validated our method on the MNIST, Fashion MNIST, CIFAR 10 and SVHN datasets, and it outperformed many state-of-the-art models. We conducted extensive experiments to study its usefulness, as well as showed how the proposed ADP framework can be used for transfer learning as well as multi-task learning, where data from two domains are generated simultaneously using the framework along with the label information. Our future work will involve understanding the theoretical implications of this new framework from a game-theoretic perspective, as well as explore the performance of the method on more complex datasets.Comment: CVPR 2018 main conference pape

    Action Sets: Weakly Supervised Action Segmentation without Ordering Constraints

    Full text link
    Action detection and temporal segmentation of actions in videos are topics of increasing interest. While fully supervised systems have gained much attention lately, full annotation of each action within the video is costly and impractical for large amounts of video data. Thus, weakly supervised action detection and temporal segmentation methods are of great importance. While most works in this area assume an ordered sequence of occurring actions to be given, our approach only uses a set of actions. Such action sets provide much less supervision since neither action ordering nor the number of action occurrences are known. In exchange, they can be easily obtained, for instance, from meta-tags, while ordered sequences still require human annotation. We introduce a system that automatically learns to temporally segment and label actions in a video, where the only supervision that is used are action sets. An evaluation on three datasets shows that our method still achieves good results although the amount of supervision is significantly smaller than for other related methods.Comment: CVPR 201
    corecore