18,362 research outputs found

    Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer

    Get PDF
    In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. Ā© 2016 Wiley Periodicals, Inc

    The Use of Fuzzy BackPropagation Neural Networks for the Early Diagnosis of Hypoxic Ischemic Encephalopathy in Newborns

    Get PDF
    Objective. To establish an early diagnostic system for hypoxic ischemic encephalopathy (HIE) in newborns based on artificial neural networks and to determine its feasibility. Methods. Based on published research as well as preliminary studies in our laboratory, multiple noninvasive indicators with high sensitivity and specificity were selected for the early diagnosis of HIE and employed in the present study, which incorporates fuzzy logic with artificial neural networks. Results. The analysis of the diagnostic results from the fuzzy neural network experiments with 140 cases of HIE showed a correct recognition rate of 100% in all training samples and a correct recognition rate of 95% in all the test samples, indicating a misdiagnosis rate of 5%. Conclusion. A preliminary model using fuzzy backpropagation neural networks based on a composite index of clinical indicators was established and its accuracy for the early diagnosis of HIE was validated. Therefore, this method provides a convenient tool for the early clinical diagnosis of HIE

    Information Technologies for Assessing the Quality of IT-specialties Graduates' Training of University by Means of Fuzzy Logic and Neural Networks

    Get PDF
    The information technologies for assessing the quality of IT-specialties graduates' training of university by means of fuzzy logic and neural networks are developed in the article. It makes possible taking into account a wide set of estimation and output parameters, influence of the external and internal factors and allows to simplify the assessing process by means of modern mathematical apparatuses of artificial intelligence

    Medical image classification and symptoms detection using neuro fuzzy

    Get PDF
    The conventional method in medicine for brain MR images classification and tumor detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. MR images also always contain a noise caused by operator performance which can lead to serious inaccuracies classification. The use of artificial intelligent techniques, for instance, neural networks, fuzzy logic, neuro fuzzy have shown great potential in this field. Hence, in this project the neuro fuzzy system or ANFIS was applied for classification and detection purposes. Decision making was performed in two stages: feature extraction using the principal component analysis (PCA) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The performance of the ANFIS classifier was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS classifier has potential in detecting the tumors

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio
    • ā€¦
    corecore