746 research outputs found

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    Clyde: A deep reinforcement learning DOOM playing agent

    Get PDF
    In this paper we present the use of deep reinforcement learn-ing techniques in the context of playing partially observablemulti-agent 3D games. These techniques have traditionallybeen applied to fully observable 2D environments, or navigation tasks in 3D environments. We show the performanceof Clyde in comparison to other competitors within the con-text of the ViZDOOM competition that saw 9 bots competeagainst each other in DOOM death matches. Clyde managedto achieve 3rd place in the ViZDOOM competition held at theIEEE Conference on Computational Intelligence and Games2016. Clyde performed very well considering its relative sim-plicity and the fact that we deliberately avoided a high levelof customisation to keep the algorithm generic

    ViZDoom Competitions: Playing Doom from Pixels

    Full text link
    This paper presents the first two editions of Visual Doom AI Competition, held in 2016 and 2017. The challenge was to create bots that compete in a multi-player deathmatch in a first-person shooter (FPS) game, Doom. The bots had to make their decisions based solely on visual information, i.e., a raw screen buffer. To play well, the bots needed to understand their surroundings, navigate, explore, and handle the opponents at the same time. These aspects, together with the competitive multi-agent aspect of the game, make the competition a unique platform for evaluating the state of the art reinforcement learning algorithms. The paper discusses the rules, solutions, results, and statistics that give insight into the agents' behaviors. Best-performing agents are described in more detail. The results of the competition lead to the conclusion that, although reinforcement learning can produce capable Doom bots, they still are not yet able to successfully compete against humans in this game. The paper also revisits the ViZDoom environment, which is a flexible, easy to use, and efficient 3D platform for research for vision-based reinforcement learning, based on a well-recognized first-person perspective game Doom

    Automated Curriculum Learning by Rewarding Temporally Rare Events

    Get PDF
    Reward shaping allows reinforcement learning (RL) agents to accelerate learning by receiving additional reward signals. However, these signals can be difficult to design manually, especially for complex RL tasks. We propose a simple and general approach that determines the reward of pre-defined events by their rarity alone. Here events become less rewarding as they are experienced more often, which encourages the agent to continually explore new types of events as it learns. The adaptiveness of this reward function results in a form of automated curriculum learning that does not have to be specified by the experimenter. We demonstrate that this \emph{Rarity of Events} (RoE) approach enables the agent to succeed in challenging VizDoom scenarios without access to the extrinsic reward from the environment. Furthermore, the results demonstrate that RoE learns a more versatile policy that adapts well to critical changes in the environment. Rewarding events based on their rarity could help in many unsolved RL environments that are characterized by sparse extrinsic rewards but a plethora of known event types.Comment: 8 page
    corecore