79 research outputs found

    Trainable videorealistic speech animation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 53-58).I describe how to create with machine learning techniques a generative, videorealistic, speech animation module. A human subject is first recorded using a videocamera as he/she utters a pre-determined speech corpus. After processing the corpus automatically, a visual speech module is learned from the data that is capable of synthesizing the human subject's mouth uttering entirely novel utterances that were not recorded in the original video. The synthesized utterance is re-composited onto a background sequence which contains natural head and eye movement. The final output is videorealistic in the sense that it looks like a video camera recording of the subject. At run time, the input to the system can be either real audio sequences or synthetic audio produced by a text-to-speech system, as long as they have been phonetically aligned. The two key contributions of this work are * a variant of the multidimensional morphable model (MMM) [4] [26] [25] to synthesize new, previously unseen mouth configurations from a small set of mouth image prototypes, * a trajectory synthesis technique based on regularization, which is automatically trained from the recorded video corpus, and which is capable of synthesizing trajectories in MMM space corresponding to any desired utterance. Results are presented on a series of numerical and psychophysical experiments designed to evaluate the synthetic animations.by Tony Farid Ezzat.Ph.D

    Relating Objective and Subjective Performance Measures for AAM-based Visual Speech Synthesizers

    Get PDF
    We compare two approaches for synthesizing visual speech using Active Appearance Models (AAMs): one that utilizes acoustic features as input, and one that utilizes a phonetic transcription as input. Both synthesizers are trained using the same data and the performance is measured using both objective and subjective testing. We investigate the impact of likely sources of error in the synthesized visual speech by introducing typical errors into real visual speech sequences and subjectively measuring the perceived degradation. When only a small region (e.g. a single syllable) of ground-truth visual speech is incorrect we find that the subjective score for the entire sequence is subjectively lower than sequences generated by our synthesizers. This observation motivates further consideration of an often ignored issue, which is to what extent are subjective measures correlated with objective measures of performance? Significantly, we find that the most commonly used objective measures of performance are not necessarily the best indicator of viewer perception of quality. We empirically evaluate alternatives and show that the cost of a dynamic time warp of synthesized visual speech parameters to the respective ground-truth parameters is a better indicator of subjective quality

    Audio-to-Visual Speech Conversion using Deep Neural Networks

    Get PDF
    We study the problem of mapping from acoustic to visual speech with the goal of generating accurate, perceptually natural speech animation automatically from an audio speech signal. We present a sliding window deep neural network that learns a mapping from a window of acoustic features to a window of visual features from a large audio-visual speech dataset. Overlapping visual predictions are averaged to generate continuous, smoothly varying speech animation. We outperform a baseline HMM inversion approach in both objective and subjective evaluations and perform a thorough analysis of our results

    Text-based Editing of Talking-head Video

    No full text
    Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker has been modified, while maintaining a seamless audio-visual flow (i.e. no jump cuts). Our method automatically annotates an input talking-head video with phonemes, visemes, 3D face pose and geometry, reflectance, expression and scene illumination per frame. To edit a video, the user has to only edit the transcript, and an optimization strategy then chooses segments of the input corpus as base material. The annotated parameters corresponding to the selected segments are seamlessly stitched together and used to produce an intermediate video representation in which the lower half of the face is rendered with a parametric face model. Finally, a recurrent video generation network transforms this representation to a photorealistic video that matches the edited transcript. We demonstrate a large variety of edits, such as the addition, removal, and alteration of words, as well as convincing language translation and full sentence synthesis

    Model-based synthesis of visual speech movements from 3D video

    Get PDF
    In this paper we describe a method for the synthesis of visual speech movements using a hybrid unit selection/model-based approach. Speech lip movements are captured using a 3D stereo face capture system, and split up into phonetic units. A dynamic parameterisation of this data is constructed which maintains the relationship between lip shapes and velocities; within this parameterisation a model of how lips move is built and is used in the animation of visual speech movements from speech audio input. The mapping from audio parameters to lip movements is disambiguated by selecting only the most similar stored phonetic units to the target utterance during synthesis. By combining properties of model-based synthesis (e.g. HMMs, neural nets) with unit selection we improve the quality of our speech synthesis

    Videorealistic facial animation for speech-based interfaces

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 79-81).This thesis explores the use of computer-generated, videorealistic facial animation (avatars) in speech-based interfaces to understand whether the use of such animations enhances the end user's experience. Research in spoken dialog systems is a robust area that has now permeated everyday life; most notably with spoken telephone dialog systems. Over the past decade, research with videorealistic animations, both photorealistic and non-photorealistic, has reached the point where there is little discernible difference between the mouth movements of videorealistic animations and the mouth movements of actual humans. Because of the minute differences between the two, videorealistic speech animations are an ideal candidate to use in dialog systems. This thesis presents two videorealistic facial animation systems: a web-based system and a real-time system.by Stephen J. Pueblo.M.Eng
    • …
    corecore