1,030 research outputs found

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    A power-controlled MAC supporting service differentiation in mobile ad hoc networks

    Get PDF
    The original power controlled multiple access (PCMA) protocol does not support service differentiation. In this paper, we extend PCMA to form a new media access control protocol supporting service differentiation in mobile ad hoc networks. To support QoS, we first introduce the in-station access category concept in 802.1 le to PCMA. For service differentiation between access categories, our major contribution is to propose a sender-initiated busy tone based mechanism that allows a user to gain quick channel access. This quick access mechanism is only performed when the number of access failures exceeds a threshold. An access category with higher priority is assigned a lower threshold for easier channel access, and vice versa. Through analysis and simulation, we demonstrate that our protocol can provide better quality of service than 802.11e in terms of throughput, delay, loss, and fairness. © 2005 IEEE.published_or_final_versio
    • 

    corecore