2,663 research outputs found

    Software-Defined Multi-Cloud Computing: A Vision, Architectural Elements, and Future Directions

    Full text link
    Cloud computing has been emerged in the last decade to enable utility-based computing resource management without purchasing hardware equipment. Cloud providers run multiple data centers in various locations to manage and provision the Cloud resources to their customers. More recently, the introduction of Software-Defined Networking (SDN) and Network Function Virtualization (NFV) opens more opportunities in Clouds which enables dynamic and autonomic configuration and provisioning of the resources in Cloud data centers. This paper proposes architectural framework and principles for Programmable Network Clouds hosting SDNs and NFVs for geographically distributed Multi-Cloud computing environments. Cost and SLA-aware resource provisioning and scheduling that minimizes the operating cost without violating the negotiated SLAs are investigated and discussed in regards of techniques for autonomic and timely VNF composition, deployment and management across multiple Clouds. We also discuss open challenges and directions for creating auto-scaling solutions for performance optimization of VNFs using analytics and monitoring techniques, algorithms for SDN controller for scalable traffic and deployment management. The simulation platform and the proof-of-concept prototype are presented with initial evaluation results.Comment: 16 pages, 1 figure, 2 tables, Proceedings of the 18th International Conference on Computational Science and Applications (ICCSA 2018, LNCS, Springer, Germany), Melbourne, Australia, July 2-5, 201

    Dynamic Environments for Virtual Machine Placement considering Elasticity and Overbooking

    Full text link
    Cloud computing datacenters provide millions of virtual machines in actual cloud markets. In this context, Virtual Machine Placement (VMP) is one of the most challenging problems in cloud infrastructure management, considering the large number of possible optimization criteria and different formulations that could be studied. Considering the on-demand model of cloud computing, the VMP problem should be solved dynamically to efficiently attend typical workload of modern applications. This work proposes a taxonomy in order to understand possible challenges for Cloud Service Providers (CSPs) in dynamic environments, based on the most relevant dynamic parameters studied so far in the VMP literature. Based on the proposed taxonomy, several unexplored environments have been identified. To further study those research opportunities, sample workload traces for each particular environment are required; therefore, basic examples illustrate a preliminary work on dynamic workload trace generation.Comment: arXiv admin note: text overlap with arXiv:1507.0009

    Energy Efficient Resource Allocation in Vehicular Cloud based Architecture

    Full text link
    The increasing availability of on-board processing units in vehicles has led to a new promising mobile edge computing (MEC) concept which integrates desirable features of clouds and VANETs under the concept of vehicular clouds (VC). In this paper we propose an architecture that integrates VC with metro fog nodes and the central cloud to ensure service continuity. We tackle the problem of energy efficient resource allocation in this architecture by developing a Mixed Integer Linear Programming (MILP) model to minimize power consumption by optimizing the assignment of different tasks to the available resources in this architecture. We study service provisioning considering different assignment strategies under varying application demands and analyze the impact of these strategies on the utilization of the VC resources and therefore, the overall power consumption. The results show that traffic demands have a higher impact on the power consumption, compared to the impact of the processing demands. Integrating metro fog nodes and vehicle edge nodes in the cloud-based architecture can save power, with an average power saving up to 54%. The power savings can increase by 12% by distributing the task assignment among multiple vehicles in the VC level, compared to assigning the whole task to a single processing node.Comment: 6 pages, 4 figures, ICTON 201

    Recent Developments in Cloud Based Systems: State of Art

    Full text link
    Cloud computing is the new buzzword in the head of the techies round the clock these days. The importance and the different applications of cloud computing are overwhelming and thus, it is a topic of huge significance. It provides several astounding features like Multitenancy, on demand service, pay per use etc. This manuscript presents an exhaustive survey on cloud computing technology and potential research issues in cloud computing that needs to be addressed

    Edge-as-a-Service: Towards Distributed Cloud Architectures

    Get PDF
    We present an Edge-as-a-Service (EaaS) platform for realising distributed cloud architectures and integrating the edge of the network in the computing ecosystem. The EaaS platform is underpinned by (i) a lightweight discovery protocol that identifies edge nodes and make them publicly accessible in a computing environment, and (ii) a scalable resource provisioning mechanism for offloading workloads from the cloud on to the edge for servicing multiple user requests. We validate the feasibility of EaaS on an online game use-case to highlight the improvement in the QoS of the application hosted on our cloud-edge platform. On this platform we demonstrate (i) low overheads of less than 6%, (ii) reduced data traffic to the cloud by up to 95% and (iii) minimised application latency between 40%-60%.Comment: 10 pages; presented at the EdgeComp Symposium 2017; will appear in Proceedings of the International Conference on Parallel Computing, 201

    TDM/WDM over AWGR Based Passive Optical Network Data Centre Architecture

    Full text link
    Passive Optical Data Centre Networks have been developed due to the performance limitations in current data centres to provide high performance within data centre networks. An AWGR based passive optical network data centre architecture is evaluated using a TDM/WDM multiple access technique to provision the flow of traffic among the network efficiently. A Mixed Integer Linear Programming model is developed to optimise resource allocation in the architecture. Using WDM-TDM as a multiple access technique helps in solving issues such as oversubscription and congestion by allowing servers to make simultaneous transmissions of packets in different time slots. The results show that the provisioning / allocation of resource within the architecture is improved with improvements of up to 75% in resource utilisation

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    MeDICINE: Rapid Prototyping of Production-Ready Network Services in Multi-PoP Environments

    Get PDF
    Virtualized network services consisting of multiple individual network functions are already today deployed across multiple sites, so called multi-PoP (points of presence) environ- ments. This allows to improve service performance by optimizing its placement in the network. But prototyping and testing of these complex distributed software systems becomes extremely challenging. The reason is that not only the network service as such has to be tested but also its integration with management and orchestration systems. Existing solutions, like simulators, basic network emulators, or local cloud testbeds, do not support all aspects of these tasks. To this end, we introduce MeDICINE, a novel NFV prototyping platform that is able to execute production-ready network func- tions, provided as software containers, in an emulated multi-PoP environment. These network functions can be controlled by any third-party management and orchestration system that connects to our platform through standard interfaces. Based on this, a developer can use our platform to prototype and test complex network services in a realistic environment running on his laptop.Comment: 6 pages, pre-prin

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    corecore