89 research outputs found

    The 6th Conference of PhD Students in Computer Science

    Get PDF

    Managed access dependability for critical services in wireless inter domain environment

    Get PDF
    The Information and Communications Technology (ICT) industry has through the last decades changed and still continues to affect the way people interact with each other and how they access and share information, services and applications in a global market characterized by constant change and evolution. For a networked and highly dynamic society, with consumers and market actors providing infrastructure, networks, services and applications, the mutual dependencies of failure free operations are getting more and more complex. Service Level Agreements (SLAs) between the various actors and users may be used to describe the offerings along with price schemes and promises regarding the delivered quality. However, there is no guarantee for failure free operations whatever efforts and means deployed. A system fails for a number of reasons, but automatic fault handling mechanisms and operational procedures may be used to decrease the probability for service interruptions. The global number of mobile broadband Internet subscriptions surpassed the number of broadband subscriptions over fixed technologies in 2010. The User Equipment (UE) has become a powerful device supporting a number of wireless access technologies and the always best connected opportunities have become a reality. Some services, e.g. health care, smart power grid control, surveillance/monitoring etc. called critical services in this thesis, put high requirements on service dependability. A definition of dependability is the ability to deliver services that can justifiably be trusted. For critical services, the access networks become crucial factors for achieving high dependability. A major challenge in a multi operator, multi technology wireless environment is the mobility of the user that necessitates handovers according to the physical movement. In this thesis it is proposed an approach for how to optimize the dependability for critical services in multi operator, multi technology wireless environment. This approach allows predicting the service availability and continuity at real-time. Predictions of the optimal service availability and continuity are considered crucial for critical services. To increase the dependability for critical services dual homing is proposed where the use of combinations of access points, possibly owned by different operators and using different technologies, are optimized for the specific location and movement of the user. A central part of the thesis is how to ensure the disjointedness of physical and logical resources so important for utilizing the dependability increase potential with dual homing. To address the interdependency issues between physical and logical resources, a study of Operations, Administrations, and Maintenance (OA&M) processes related to the access network of a commercial Global System for Mobile Communications (GSM)/Universal Mobile Telecommunications System (UMTS) operator was performed. The insight obtained by the study provided valuable information of the inter woven dependencies between different actors in the delivery chain of services. Based on the insight gained from the study of OA&M processes a technological neutral information model of physical and logical resources in the access networks is proposed. The model is used for service availability and continuity prediction and to unveil interdependencies between resources for the infrastructure. The model is proposed as an extension of the Media Independent Handover (MIH) framework. A field trial in a commercial network was conducted to verify the feasibility in retrieving the model related information from the operators' Operational Support Systems (OSSs) and to emulate the extension and usage of the MIH framework. In the thesis it is proposed how measurement reports from UE and signaling in networks are used to define virtual cells as part of the proposed extension of the MIH framework. Virtual cells are limited geographical areas where the radio conditions are homogeneous. Virtual cells have radio coverage from a number of access points. A Markovian model is proposed for prediction of the service continuity of a dual homed critical service, where both the infrastructure and radio links are considered. A dependability gain is obtained by choosing a global optimal sequence of access points. Great emphasizes have been on developing computational e cient techniques and near-optimal solutions considered important for being able to predict service continuity at real-time for critical services. The proposed techniques to obtain the global optimal sequence of access points may be used by handover and multi homing mechanisms/protocols for timely handover decisions and access point selections. With the proposed extension of the MIH framework a global optimal sequence of access points providing the highest reliability may be predicted at real-time

    NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    This document is a collection of technical reports on research conducted by the participants in the 1996 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the twelfth year that a NASA/ASEE program has been conducted at KSC. The 1996 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, DC and KSC. The KSC Program was one of nine such Aeronautics and Space Research Program funded by NASA in 1996. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    構造化データに対する予測手法:グラフ,順序,時系列

    Get PDF
    京都大学新制・課程博士博士(情報学)甲第23439号情博第769号新制||情||131(附属図書館)京都大学大学院情報学研究科知能情報学専攻(主査)教授 鹿島 久嗣, 教授 山本 章博, 教授 阿久津 達也学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDFA

    Robust distributed resource allocation for cellular vehicle-to-vehicle communication

    Get PDF
    Mit Release 14 des LTE Standards unterstützt dieser die direkte Fahrzeug-zu-Fahrzeug-Kommunikation über den Sidelink. Diese Dissertation beschäftigt sich mit dem Scheduling Modus 4, einem verteilten MAC-Protokoll ohne Involvierung der Basisstation, das auf periodischer Wiederverwendung von Funkressourcen aufbaut. Der Stand der Technik und eine eigene Analyse des Protokolls decken verschiedene Probleme auf. So wiederholen sich Kollisionen von Paketen, wodurch manche Fahrzeuge für längere Zeit keine sicherheitskritischen Informationen verbreiten können. Kollisionen entstehen vermehrt auch dadurch, dass Hidden-Terminal-Probleme in Kauf genommen werden oder veränderliche Paketgrößen und -raten schlecht unterstützt werden. Deshalb wird ein Ansatz namens "Scheduling based on Acknowledgement Feedback Exchange" vorgeschlagen. Zunächst wird eine Funkreservierung in mehrere ineinander verschachtelte Unter-Reservierungen mit verschiedenen Funkressourcen unterteilt, was die Robustheit gegenüber wiederholenden Kollisionen erhöht. Dies ist die Grundlage für eine verteilte Staukontrolle, die die Periodizitätseigenschaft nicht verletzt. Außerdem können so veränderliche Paketgrößen oder -raten besser abgebildet werden. Durch die periodische Wiederverwendung können Acknowledgements für Funkressourcen statt für Pakete ausgesendet werden. Diese können in einer Bitmap in den Padding-Bits übertragen werden. Mittels der Einbeziehung dieser Informationen bei der Auswahl von Funkressourcen können Hidden-Terminal-Probleme effizient vermieden werden, da die Acknowledgements auch eine Verwendung dieser Funkressource ankündigen. Kollisionen können nun entdeckt und eine Wiederholung vermieden werden. Die Evaluierung des neuen MAC-Protokolls wurde zum großen Teil mittels diskreter-Event-Simulationen durchgeführt, wobei die Bewegung jedes einzelnen Fahrzeuges simuliert wurde. Der vorgeschlagene Ansatz führt zu einer deutlich erhöhten Paketzustellrate. Die Verwendung einer anwendungsbezogenen Awareness-Metrik zeigt, dass die Zuverlässigkeit der Kommunikation durch den Ansatz deutlich verbessert werden kann. Somit zeigt sich der präsentierte Ansatz als vielversprechende Lösung für die erheblichen Probleme, die der LTE Modus 4 mit sich bringt.The LTE Standard added support for a direct vehicle-to-vehicle communication via the Sidelink with Release 14. This dissertation focuses on the scheduling Mode 4, a distributed MAC protocol without involvement of the base station, which requires the periodic reuse of radio resources. The state of the art and a own analysis of this protocol unveil multiple problems. For example, packet collisions repeat in time, so that some vehicles are unable to distribute safety-critical information for extended periods of time. Collisions also arise due to the hidden-terminal problem, which is simply put up with in Mode 4. Additionally, varying packet sizes or rates can hardly be supported. Consequently, an approach called "Scheduling based on Acknowledgement Feedback Exchange" is proposed. Firstly, a reservation of radio resources is split into multiple, interleaved sub-reservations that use different radio resources. This increases the robustness against repeating collisions. It is also the basis for a distributed congestion control that does not violate the periodicity. Moreover, different packet rates or sizes can be supported. The periodic reuse of radio resources enables the transmission of acknowledgements for radio resources instead of packets. These can be transmitted in a bitmap inside the padding bits. Hidden-terminal problems can be mitigated by considering the acknowledgements when selecting radio resources as they announce the use of these radio resources. Collisions can also be detected and prevented from re-occurring. The evaluation of the MAC protocol is mostly performed using discrete-event simulations, which model the movement of every single vehicle. The presented approach leads to a clear improvement of the packet delivery rate. The use of an application-oriented metric shows that the communication robustness can be improved distinctly. The proposed approach hence presents itself as a promising solution for the considerable problems of LTE Mode 4

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore