113,777 research outputs found

    Reliability analysis of an air traffic network: from network structure to transport function

    Get PDF
    To scientifically evaluate the reliability of air traffic networks, a definition of air traffic network reliability is proposed in this paper. Calculation models of the connectivity reliability, travel-time reliability, and capacity reliability of the air traffic network are constructed based on collected historical data, considering the current status and the predicted future evolution trends. Considering the randomness and fuzziness of factors affecting reliability, a comprehensive evaluation model of air traffic networks based on the uncertainty transformation model is established. Finally, the reliability of the US air traffic network is analyzed based on data published by the Transportation Statistics Bureau of the US Department of Transportation. The results show that the connectivity reliability is 0.4073, the capacity reliability is 0.8300, the travel-time reliability is 0.9180, and the overall reliability evaluated is “relatively reliable”. This indicates that although the US structural reliability is relatively low, the US air traffic management is very efficient, and the overall reliability is strong. The reliability in nonpeak hours is much higher than that in peak hours. The method can identify air traffic network reliability efficiently. The main factors affecting reliability can be found in the calculation process, and are beneficial for air traffic planning and management. The empirical analysis also reflects that the evaluation model based on the uncertainty transformation model can transform the quantitative data of network structure and traffic function into the qualitative language of reliability

    Uncertainty Quantification in the Road-Level Traffic Risk Prediction by Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network(STZINB-GNN)

    Get PDF
    Urban road-based risk prediction is a crucial yet challenging aspect of research in transportation safety. While most existing studies emphasize accurate prediction, they often overlook the importance of model uncertainty. In this paper, we introduce a novel Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) for road-level traffic risk prediction, with a focus on uncertainty quantification. Our case study, conducted in the Lambeth borough of London, UK, demonstrates the superior performance of our approach in comparison to existing methods. Although the negative binomial distribution may not be the most suitable choice for handling real, non-binary risk levels, our work lays a solid foundation for future research exploring alternative distribution models or techniques. Ultimately, the STZINB-GNN contributes to enhanced transportation safety and data-driven decision-making in urban planning by providing a more accurate and reliable framework for road-level traffic risk prediction and uncertainty quantification

    Uncertainty Quantification in the Road-Level Traffic Risk Prediction by Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network(STZINB-GNN) (Short Paper)

    Get PDF
    Urban road-based risk prediction is a crucial yet challenging aspect of research in transportation safety. While most existing studies emphasize accurate prediction, they often overlook the importance of model uncertainty. In this paper, we introduce a novel Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) for road-level traffic risk prediction, with a focus on uncertainty quantification. Our case study, conducted in the Lambeth borough of London, UK, demonstrates the superior performance of our approach in comparison to existing methods. Although the negative binomial distribution may not be the most suitable choice for handling real, non-binary risk levels, our work lays a solid foundation for future research exploring alternative distribution models or techniques. Ultimately, the STZINB-GNN contributes to enhanced transportation safety and data-driven decision-making in urban planning by providing a more accurate and reliable framework for road-level traffic risk prediction and uncertainty quantification

    Robust and stochastic approaches to network capacity design under demand uncertainty

    Get PDF
    This thesis considers the network capacity design problem with demand uncertainty using the stochastic, robust and distributionally robust stochastic optimization approaches (DRSO). Network modeling in itself has found wide areas of application in most fields of human endeavor. The network would normally consist of source (origin) and sink (destination) nodes connected by arcs that allow for flows of an entity from the origin to the destination nodes. In this thesis, a special type of the minimum cost flow problem is addressed, the multi-commodity network flow problem. Commodities are the flow types that are transported on a shared network. Offered demands are, for the most part, unknown or uncertain, hence a model that immune against this uncertainty becomes the focus as well as the practicability of such models in the industry. This problem falls under the two-stage optimization framework where a decision is delayed in time to adjust for the first decision earlier made. The first stage decision is called the "here and now", while the second stage traffic re-adjustment is the "wait and see" decision. In the literature, the decision-maker is often believed to know the shape of the uncertainty, hence we address this by considering a data-driven uncertainty set. The research also addressed the non-linearity of cost function despite the abundance of literature assuming linearity and models proposed for this. This thesis consist of four main chapters excluding the "Introduction" chapter and the "Approaches to Optimization under Uncertainty" chapter where the methodologies are reviewed. The first of these four, Chapter 3, proposes the two models for the Robust Network Capacity Expansion Problem (RNCEP) with cost non-linearity. These two are the RNCEP with fixed-charge cost and RNCEP with piecewise-linear cost. The next chapter, Chapter 4, compares the RNCEP models under two types of uncertainties in order to address the issue of usefulness in a real world setting. The resulting two robust models are also comapared with the stochastic optimization model with distribution mean. Chapter 5 re-examines the earlier problem using machine learning approaches to generate the two uncertainty sets while the last of these chapters, Chapter 6, investigates DRSO model to network capacity planning and proposes an efficient solution technique

    Pedestrian Prediction by Planning using Deep Neural Networks

    Full text link
    Accurate traffic participant prediction is the prerequisite for collision avoidance of autonomous vehicles. In this work, we predict pedestrians by emulating their own motion planning. From online observations, we infer a mixture density function for possible destinations. We use this result as the goal states of a planning stage that performs motion prediction based on common behavior patterns. The entire system is modeled as one monolithic neural network and trained via inverse reinforcement learning. Experimental validation on real world data shows the system's ability to predict both, destinations and trajectories accurately

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Valuing flexibility in the migration to flexible-grid networks

    Get PDF
    Increasing network demand is expected to put pressure on the available capacity in core networks. Flexible optical networking can now be installed to increase network capacity in light of future traffic demands. However, this technology is still in its infancy and might lack the full functionality that may appear within a few years. When replacing core network equipment, it is therefore important to make the right investment decision between upgrading toward flexible-grid or fixed-grid equipment. This paper researches various installation options using a techno-economic analysis, extended with real option insights, showing the impact of uncertainty and flexibility on the investment decision. By valuing the different options, a correct investment decision can be made

    Traveller Behaviour: Decision making in an unpredictable world

    Get PDF
    This paper discusses the nature and consequences of uncertainty in transport systems. Drawing on work from a number of fields, it addresses travellers’ abilities to predict variable phenomena, their perception of uncertainty, their attitude to risk and the various strategies they might adopt in response to uncertainty. It is argued that despite the increased interest in the representation of uncertainty in transport systems, most models treat uncertainty as a purely statistical issue and ignore the psychological aspects of response to uncertainty. The principle theories and models currently used to predict travellers’ response to uncertainty are presented and number of alternative modelling approaches are outlined. It is argued that the current generation of predictive models do not provide an adequate basis for forecasting response to changes in the degree of uncertainty or for predicting the likely effect of providing additional information. A number of alternative modelling approaches are identified to deal with travellers’ acquisition of information, the definition of their choice set and their choice between the available options. The use of heuristic approaches is recommended as an alternative to more conventional probabilistic methods
    • …
    corecore