65,606 research outputs found

    MATSim-T : Architecture and Simulation Times

    Get PDF
    Micro-simulations for transport planning are becoming increasingly important in traffic simulation, traffic analysis, and traffic forecasting. In the last decades the shift from using typically aggregated data to more detailed, individual based, complex data (e.g. GPS tracking) andthe continuously growing computer performance on fixed price level leads to the possibility of using microscopic models for large scale planning regions. This chapter presents such a micro-simulation. The work is part of the research project MATSim (Multi Agent Transport Simulation, http://matsim.org). In the chapter here the focus lies on design and implementation issues as well as on computational performance of different parts of the system. Based on a study of Swiss daily traffic – ca. 2.3 million individuals using motorized individual transport producing about 7.1 million trips, assigned to a Swiss network model with about 60,000 links, simulated and optimized completely time-dynamic for a complete workday – it is shown that the system is able to generate those traffic patterns in about 36 hours computation time

    Effects of Data Resolution and Human Behavior on Large Scale Evacuation Simulations

    Get PDF
    Traffic Analysis Zones (TAZ) based macroscopic simulation studies are mostly applied in evacuation planning and operation areas. The large size in TAZ and aggregated information of macroscopic simulation underestimate the real evacuation performance. To take advantage of the high resolution demographic data LandScan USA (the zone size is much smaller than TAZ) and agent-based microscopic traffic simulation models, many new problems appeared and novel solutions are needed. A series of studies are conducted using LandScan USA Population Cells (LPC) data for evacuation assignments with different network configurations, travel demand models, and travelers compliance behavior. First, a new Multiple Source Nearest Destination Shortest Path (MSNDSP) problem is defined for generating Origin Destination matrix in evacuation assignments when using LandScan dataset. Second, a new agent-based traffic assignment framework using LandScan and TRANSIMS modules is proposed for evacuation planning and operation study. Impact analysis on traffic analysis area resolutions (TAZ vs LPC), evacuation start times (daytime vs nighttime), and departure time choice models (normal S shape model vs location based model) are studied. Third, based on the proposed framework, multi-scale network configurations (two levels of road networks and two scales of zone sizes) and three routing schemes (shortest network distance, highway biased, and shortest straight-line distance routes) are implemented for the evacuation performance comparison studies. Fourth, to study the impact of human behavior under evacuation operations, travelers compliance behavior with compliance levels from total complied to total non-complied are analyzed.Comment: PhD dissertation. UT Knoxville. 130 pages, 37 figures, 8 tables. University of Tennessee, 2013. http://trace.tennessee.edu/utk_graddiss/259

    Distributed agent-based traffic simulations

    Get PDF
    Modeling and simulation play an important role in transportation networks analysis. With the widespread of personalized real-time information sources, it is relevant for the simulation model to be individual-centered. The agent-based simulation is the most promising paradigm in this context. However, representing the movements of realistic numbers of travelers within reasonable execution times requires significant computational resources. It also requires relevant methods, architectures and algorithms that respect the characteristics of transportation networks. In this paper, we tackle the problem of using high-performance computing for agent-based traffic simulations. To do so, we define two generic agent-based simulation models, representing the existing sequential agent-based traffic simulations. The first model is macroscopic, in which travelers do not interact directly and use a fundamental diagram of traffic flow to continuously compute their speeds. The second model is microscopic, in which travelers interact with their neighbors to adapt their speeds to their surrounding environment. We define patterns to distribute these simulations in a high-performance environment. The first distributes agents equally between available computation units. The second pattern splits the environment over the different units. We finally propose a diffusive method to dynamically balance the load between units during execution. The results show that agent-based distribution is more efficient with macroscopic simulations, with a speedup of 6 compared to the sequential version, while environmentbased distribution is more efficient with microscopic simulations, with a speedup of 14. Our diffusive load-balancing algorithm improves further the performance of the environment based approach by 150%

    Using Computational Agents to Design Participatory Social Simulations

    Get PDF
    In social science, the role of stakeholders is increasing in the development and use of simulation models. Their participation in the design of agent-based models (ABMs) has widely been considered as an efficient solution to the validation of this particular type of model. Traditionally, "agents" (as basic model elements) have not been concerned with stakeholders directly but via designers or role-playing games (RPGs). In this paper, we intend to bridge this gap by introducing computational or software agents, implemented from an initial ABM, into a new kind of RPG, mediated by computers, so that these agents can interact with stakeholders. This interaction can help not only to elicit stakeholders' informal knowledge or unpredicted behaviours, but also to control stakeholders' focus during the games. We therefore formalize a general participatory design method using software agents, and illustrate it by describing our experience in a project aimed at developing agent-based social simulations in the field of air traffic management.Participatory Social Simulations, Agent-Based Social Simulations, Computational Agents, Role-Playing Games, Artificial Maieutics, User-Centered Design

    Agent-based modeling and simulation for the design of the future european Air Traffic Management system: the experience of CASSIOPEIA

    Get PDF
    The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe

    Towards reducing traffic congestion using cooperative adaptive cruise control on a freeway with a ramp

    Get PDF
    Purpose: In this paper, the impact of Cooperative Adaptive Cruise Control (CACC) systems on traffic performance is examined using microscopic agent-based simulation. Using a developed traffic simulation model of a freeway with an on-ramp - created to induce perturbations and to trigger stop-and-go traffic, the CACC system’s effect on the traffic performance is studied. The previously proposed traffic simulation model is extended and validated. By embedding CACC vehicles in different penetration levels, the results show significance and indicate the potential of CACC systems to improve traffic characteristics and therefore can be used to reduce traffic congestion. The study shows that the impact of CACC is positive but is highly dependent on the CACC market penetration. The flow rate of the traffic using CACC is proportional to the market penetration rate of CACC equipped vehicles and the density of the traffic. Design/methodology/approach: This paper uses microscopic simulation experiments followed by a quantitative statistical analysis. Simulation enables researchers manipulating the system variables to straightforwardly predict the outcome on the overall system, giving researchers the unique opportunity to interfere and make improvements to performance. Thus with simulation, changes to variables that might require excessive time, or be unfeasible to carry on real systems, are often completed within seconds. Findings: The findings of this paper are summarized as follow: ‱ Provide and validate a platform (agent-based microscopic traffic simulator) in which any CACC algorithm (current or future) may be evaluated. ‱ Provide detailed analysis associated with implementation of CACC vehicles on freeways. ‱ Investigate whether embedding CACC vehicles on freeways has a significant positive impact or not. Research limitations/implications: The main limitation of this research is that it has been conducted solely in a computer laboratory. Laboratory experiments and/or simulations provide a controlled setting, well suited for preliminary testing and calibrating of the input variables. However, laboratory testing is by no means sufficient for the entire methodology validation. It must be complemented by fundamental field testing. As far as the simulation model limitations, accidents, weather conditions, and obstacles in the roads were not taken into consideration. Failures in the operation of the sensors and communication of CACC design equipment were also not considered. Additionally, the special HOV lanes were limited to manual vehicles and CACC vehicles. Emergency vehicles, buses, motorcycles, and other type of vehicles were not considered in this dissertation. Finally, it is worthy to note that the human factor is far more sophisticated, hard to predict, and flexible to be exactly modeled in a traffic simulation model perfectly. Some human behavior could occur in real life that the simulation model proposed would fail to model. Practical implications: A high percentage of CACC market penetration is not occurring in the near future. Thus, reaching a high penetration will always be a challenge for this type of research. The public accessibility for such a technology will always be a major practical challenge. With such a small headway safety gap, even if the technology was practically proven to be efficient and safe, having the public to accept it and feel comfortable in using it will always be a challenge facing the success of the CACC technology. Originality/value: The literature on the impact of CACC on traffic dynamics is limited. In addition, no previous work has proposed an open-source microscopic traffic simulator where different CACC algorithms could be easily used and tested. We believe that the proposed model is more realistic than other traffic models, and is one of the very first models to model the behavior CACC vehicles on freeways.Peer Reviewe

    Agent-based Modelling and Simulation of Air Transport Technology

    Get PDF
    Declining travel time differences of mid-distance transport modes motivate use of multi-agent simulation models to analyze and forecast behaviour of actors in the transport system. This paper focuses on air-transport technology. A simulation model is proposed, that represents details of air traffic microscopically but is fast enough to enable an iterative simulation-based passenger-trip assignment. Aircraft are modelled in detail in respect to departure time and seat availability. Modelling of airports and routes of aircraft focuses on the available capacity of runways. Several simulation runs illustrate how the model can be calibrated using available parameters. The model can be used for an agent-based traffic assignment. Overall, the approach appears to be suited to analyze and forecast mid-distance transport

    Towards Reducing Traffic Congestion Using Cooperative Adaptive Cruise Control on a Freeway With a Ramp

    Get PDF
    Purpose: In this paper, the impact of Cooperative Adaptive Cruise Control (CACC) systems on traffic performance is examined using microscopic agent-based simulation. Using a developed traffic simulation model of a freeway with an on-ramp - created to induce perturbations and to trigger stop-and-go traffic, the CACC system’s effect on the traffic performance is studied. The previously proposed traffic simulation model is extended and validated. By embedding CACC vehicles in different penetration levels, the results show significance and indicate the potential of CACC systems to improve traffic characteristics and therefore can be used to reduce traffic congestion. The study shows that the impact of CACC is positive but is highly dependent on the CACC market penetration. The flow rate of the traffic using CACC is proportional to the market penetration rate of CACC equipped vehicles and the density of the traffic. Design/methodology/approach: This paper uses microscopic simulation experiments followed by a quantitative statistical analysis. Simulation enables researchers manipulating the system variables to straightforwardly predict the outcome on the overall system, giving researchers the unique opportunity to interfere and make improvements to performance. Thus with simulation, changes to variables that might require excessive time, or be unfeasible to carry on real systems, are often completed within seconds. Findings: The findings of this paper are summarized as follow: ‱ Provide and validate a platform (agent-based microscopic traffic simulator) in which any CACC algorithm (current or future) may be evaluated. ‱ Provide detailed analysis associated with implementation of CACC vehicles on freeways. ‱ Investigate whether embedding CACC vehicles on freeways has a significant positive impact or not. Research limitations/implications: The main limitation of this research is that it has been conducted solely in a computer laboratory. Laboratory experiments and/or simulations provide a controlled setting, well suited for preliminary testing and calibrating of the input variables. However, laboratory testing is by no means sufficient for the entire methodology validation. It must be complemented by fundamental field testing. As far as the simulation model limitations, accidents, weather conditions, and obstacles in the roads were not taken into consideration. Failures in the operation of the sensors and communication of CACC design equipment were also not considered. Additionally, the special HOV lanes were limited to manual vehicles and CACC vehicles. Emergency vehicles, buses, motorcycles, and other type of vehicles were not considered in this dissertation. Finally, it is worthy to note that the human factor is far more sophisticated, hard to predict, and flexible to be exactly modeled in a traffic simulation model perfectly. Some human behavior could occur in real life that the simulation model proposed would fail to model. Practical implications: A high percentage of CACC market penetration is not occurring in the near future. Thus, reaching a high penetration will always be a challenge for this type of research. The public accessibility for such a technology will always be a major practical challenge. With such a small headway safety gap, even if the technology was practically proven to be efficient and safe, having the public to accept it and feel comfortable in using it will always be a challenge facing the success of the CACC technology. Originality/value: The literature on the impact of CACC on traffic dynamics is limited. In addition, no previous work has proposed an open-source microscopic traffic simulator where different CACC algorithms could be easily used and tested. We believe that the proposed model is more realistic than other traffic models, and is one of the very first models to model the behavior CACC vehicles on freeways
    • 

    corecore