960 research outputs found

    Slight-Delay Shaped Variable Bit Rate (SD-SVBR) Technique for Video Transmission

    Get PDF
    The aim of this thesis is to present a new shaped Variable Bit Rate (VBR) for video transmission, which plays a crucial role in delivering video traffic over the Internet. This is due to the surge of video media applications over the Internet and the video typically has the characteristic of a highly bursty traffic, which leads to the Internet bandwidth fluctuation. This new shaped algorithm, referred to as Slight Delay - Shaped Variable Bit Rate (SD-SVBR), is aimed at controlling the video rate for video application transmission. It is designed based on the Shaped VBR (SVBR) algorithm and was implemented in the Network Simulator 2 (ns-2). SVBR algorithm is devised for real-time video applications and it has several limitations and weaknesses due to its embedded estimation or prediction processes. SVBR faces several problems, such as the occurrence of unwanted sharp decrease in data rate, buffer overflow, the existence of a low data rate, and the generation of a cyclical negative fluctuation. The new algorithm is capable of producing a high data rate and at the same time a better quantization parameter (QP) stability video sequence. In addition, the data rate is shaped efficiently to prevent unwanted sharp increment or decrement, and to avoid buffer overflow. To achieve the aim, SD-SVBR has three strategies, which are processing the next Group of Picture (GoP) video sequence and obtaining the QP-to-data rate list, dimensioning the data rate to a higher utilization of the leaky-bucket, and implementing a QP smoothing method by carefully measuring the effects of following the previous QP value. However, this algorithm has to be combined with a network feedback algorithm to produce a better overall video rate control. A combination of several video clips, which consisted of a varied video rate, has been used for the purpose of evaluating SD-SVBR performance. The results showed that SD-SVBR gains an impressive overall Peak Signal-to-Noise Ratio (PSNR) value. In addition, in almost all cases, it gains a high video rate but without buffer overflow, utilizes the buffer well, and interestingly, it is still able to obtain smoother QP fluctuation

    Performance of voice and video conferencing over ATM and gigabit ethernet backbone networks

    Get PDF
    Gigabit Ethernet and ATM network technologies have been modeled as campus network backbones for the simulation-based comparison of their performance. Real-time voice and video conferencing traffic is used to compare the performance of both backbone technologies in terms of response times and packet end-to-end delays. Simulation results show that Gigabit Ethernet has been able to perform the same and in some cases better than ATM as a backbone network for video and voice conferencing providing network designers with a cheaper solution to meet the growing needs of bandwidth-hungry applications in a campus environment

    Building self-optimized communication systems based on applicative cross-layer information

    Get PDF
    This article proposes the Implicit Packet Meta Header(IPMH) as a standard method to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams using legacy and proprietary streams’ headers (e.g. Real-time Transport Protocol headers). The use of IPMH by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet selfoptimization of communication services regarding the actual application requirements. A case study showing how IPMH is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach

    Rate Control for VBR Video Coders in Broadband Networks

    Get PDF

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years
    • 

    corecore