4,558 research outputs found

    A Framework for Incident Detection and notification in Vehicular Ad-Hoc Networks

    Get PDF
    The US Department of Transportation (US-DOT) estimates that over half of all congestion events are caused by highway incidents rather than by rush-hour traffic in big cities. The US-DOT also notes that in a single year, congested highways due to traffic incidents cost over $75 billion in lost worker productivity and over 8.4 billion gallons of fuel. Further, the National Highway Traffic Safety Administration (NHTSA) indicates that congested roads are one of the leading causes of traffic accidents, and in 2005 an average of 119 persons died each day in motor vehicle accidents. Recently, Vehicular Ad-hoc Networks (VANET) employing a combination of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communication have been proposed to alert drivers to traffic events including accidents, lane closures, slowdowns, and other traffic-safety issues. In this thesis, we propose a novel framework for incident detection and notification dissemination in VANETs. This framework consists of three main components: a system architecture, a traffic incident detection engine and a notification dissemination mechanism. The basic idea of our framework is to collect and aggregate traffic-related data from passing cars and to use the aggregated information to detect traffic anomalies. Finally, the suitably filtered aggregated information is disseminated to alert drivers about traffic delays and incidents. The first contribution of this thesis is an architecture for the notification of traffic incidents, NOTICE for short. In NOTICE, sensor belts are embedded in the road at regular intervals, every mile or so. Each belt consists of a collection of pressure sensors, a simple aggregation and fusion engine, and a few small transceivers. The pressure sensors in each belt allow every message to be associated with a physical vehicle passing over that belt. Thus, no one vehicle can pretend to be multiple vehicles and then, is no need for an ID to be assigned to vehicles. Vehicles in NOTICE are fitted with a tamper-resistant Event Data Recorder (EDR), very much like the well-known black-boxes onboard commercial aircraft. EDRs are responsible for storing vehicles behavior between belts such as acceleration, deceleration and lane changes. Importantly, drivers can provide input to the EDR, using a simple menu, either through a dashboard console or through verbal input. The second contribution of this thesis is to develop incident detection techniques that use the information provided by cars in detecting possible incidents and traffic anomalies using intelligent inference techniques. For this purpose, we developed deterministic and probabilistic techniques to detect both blocking incidents, accidents for examples, as well as non-blocking ones such as potholes. To the best of our knowledge, our probabilistic technique is the first VANET based automatic incident detection technique that is capable of detecting both blocking and non blocking incidents. Our third contribution is to provide an analysis for vehicular traffic proving that VANETs tend to be disconnected in many highway scenarios, consisting of a collection of disjoint clusters. We also provide an analytical way to compute the expected cluster size and we show that clusters are quite stable over time. To the best of our knowledge, we are the first in the VANET community to prove analytically that disconnection is the norm rather than the exceptions in VANETs. Our fourth contribution is to develop data dissemination techniques specifically adapted to VANETs. With VANETs disconnection in mind, we developed data dissemination approaches that efficiently propagate messages between cars and belts on the road. We proposed two data dissemination techniques, one for divided roads and another one for undivided roads. We also proposed a probabilistic technique used by belts to determine how far should an incident notification be sent to alert approaching drivers. Our fifth contribution is to propose a security technique to avoid possible attacks from malicious drivers as well as preserving driver\u27s privacy in data dissemination and notification delivery in NOTICE. We also proposed a belt clustering scheme to reduce the probability of having a black-hole in the message dissemination while reducing also the operational burden if a belt is compromised

    Increasing Intelligence In Inter-vehicle Communications To Reduce Traffic Congestions: Experiments In Urban And Highway Environments

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Intelligent Transportation Systems (ITS) rely on Inter-Vehicle Communication (IVC) to streamline the operation of vehicles by managing vehicle traffic, assisting drivers with safety and sharing information, as well as providing appropriate services for passengers. Traffic congestion is an urban mobility problem, which causes stress to drivers and economic losses. In this context, this work proposes a solution for the detection, dissemination and control of congested roads based on inter-vehicle communication, called INCIDEnT. The main goal of the proposed solution is to reduce the average trip time, CO emissions and fuel consumption by allowing motorists to avoid congested roads. The simulation results show that our proposed solution leads to short delays and a low overhead. Moreover, it is efficient with regard to the coverage of the event and the distance to which the information can be propagated. The findings of the investigation show that the proposed solution leads to (i) high hit rate in the classification of the level of congestion, (ii) a reduction in average trip time, (iii) a reduction in fuel consumption, and (iv) reduced CO emissions118Sao Paulo Research Foundation (FAPESP) [2015/11536-4, 2015/18898-9]FAPESP [2014/06330-5]Office of Naval Research GlobalCNPqFAPEMIGFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    VANET-Based Traffic Monitoring and Incident Detection System: A Review

    Get PDF
    As a component of intelligent transport systems (ITS), vehicular ad hoc network (VANET), which is a subform of manet, has been identified. It is established on the roads based on available vehicles and supporting road infrastructure, such as base stations. An accident can be defined as any activity in the environment that may be harmful to human life or dangerous to human life. In terms of early detection, and broadcast delay. VANET has shown various problems. The available technologies for incident detection and the corresponding algorithms for processing. The present problem and challenges of incident detection in VANET technology are discussed in this paper. The paper also reviews the recently proposed methods for early incident techniques and studies them

    SEE-TREND: SEcurE Traffic-Related EveNt Detection in Smart Communities

    Get PDF
    It has been widely recognized that one of the critical services provided by Smart Cities and Smart Communities is Smart Mobility. This paper lays the theoretical foundations of SEE-TREND, a system for Secure Early Traffic-Related EveNt Detection in Smart Cities and Smart Communities. SEE-TREND promotes Smart Mobility by implementing an anonymous, probabilistic collection of traffic-related data from passing vehicles. The collected data are then aggregated and used by its inference engine to build beliefs about the state of the traffic, to detect traffic trends, and to disseminate relevant traffic-related information along the roadway to help the driving public make informed decisions about their travel plans, thereby preventing congestion altogether or mitigating its nefarious effects

    Development and evaluation of advanced traveler information system (ATIS) using vehicle-to-vehicle (V2V) communication system

    Get PDF
    This research develops and evaluates an Advanced Traveler Information System (ATIS) model using a Vehicle-to-Vehicle (V2V) communication system (referred to as the GATIS-V2V model) with the off-the-shelf microscopic simulation model, VISSIM. The GATIS-V2V model is tested on notional small traffic networks (non-signalized and signalized) and a 6X6 typical urban grid network (signalized traffic network). The GATIS-V2V model consists of three key modules: vehicle communication, on-board travel time database management, and a Dynamic Route Guidance System (DRGS). In addition, the system performance has been enhanced by applying three complementary functions: Autonomous Automatic Incident Detection (AAID), a minimum sample size algorithm, and a simple driver behavior model. To select appropriate parameter ranges for the complementary functions a sensitivity analysis has been conducted. The GATIS-V2V performance has been investigated relative to three underlying system parameters: traffic flow, communication radio range, and penetration ratio of participating vehicles. Lastly, the enhanced GATIS-V2V model is compared with the centralized traffic information system. This research found that the enhanced GATIS-V2V model outperforms the basic model in terms of travel time savings and produces more consistent and robust system output under non-recurrent traffic states (i.e., traffic incident) in the simple traffic network. This research also identified that the traffic incident detection time and driver's route choice rule are the most crucial factors influencing the system performance. As expected, as traffic flow and penetration ratio increase, the system becomes more efficient, with non-participating vehicles also benefiting from the re-routing of participating vehicles. The communication radio ranges considered were found not to significantly influence system operations in the studied traffic network. Finally, it is found that the decentralized GATIS-V2V model has similar performance to the centralized model even under low flow, short radio range, and low penetration ratio cases. This implies that a dynamic infrastructure-based traffic information system could replace a fixed infrastructure-based traffic information system, allowing for considerable savings in fixed costs and ready expansion of the system off of the main network corridors.Ph.D.Committee Chair: Hunter, Michael; Committee Member: Fujimoto, Richard; Committee Member: Guensler, Randall; Committee Member: Leonard, John; Committee Member: Meyer, Michae

    Evaluating the Impacts of Accelerated Incident Clearance Tools and Strategies by Harnessing the Power of Microscopic Traffic Simulation

    Get PDF
    Traffic incidents cause Americans delay, waste fuel, cause injuries, and create toxic emissions. Transportation professionals have implemented a variety of tools to manage these impacts and researchers have studied their effectiveness, illustrating a wide range between different tools and locations. To improve this state of knowledge, this dissertation sought to 1) identify prominent and effective incident management strategies, 2) model six selected incident management strategies within five highway corridors in South Carolina, and 3) apply benefit-cost analysis to evaluate the impact of various combinations of these strategies. To meet these objectives, the author evaluated published literature of the selected strategies, administered a nationwide survey of these strategies, conducted traffic simulation, and performed benefit-cost analysis. The literature review guided the author to fill gaps in knowledge regarding the effectiveness and expense of identified strategies. The nationwide survey identified effective incident management tools, the extent of their adoption, and their common problems. The author then applied PARAMICS traffic simulation software to evaluate the impact of six tools at five sites on metropolitan interstates throughout South Carolina. Finally, benefit-cost analysis was used to evaluate the benefits against costs at each study site. The survey provided many insights into both the effectiveness and collaboration within and among traffic incident management agencies and guided the author in selecting tools for evaluation. While the simulation study found that as the severity and duration of incident increases, so does the potential benefit of incident management tools, the frequency of incidents also produces significant impact on annual benefits. The benefit-cost analysis indicated that while all the incident management tools evaluated provided more benefits than costs, freeway service patrols and traffic cameras produced the highest return for incidents of varying severity. It was also found more advantageous to select one expensive but efficient incident management technology, rather than engage in the incremental deployment of various systems that might provide redundant benefits. Departments of transportation across the United States see the need to manage incidents more efficiently, consequently this dissertation developed data and analysis to compare benefits with costs to aid decision makers in selecting tools and strategies for future incident management endeavors

    On the Security of Information Dissemination in the Internet-of-Vehicles

    Get PDF
    Internet of Vehicles (IoV) is regarded as an emerging paradigm for connected vehicles to exchange their information with other vehicles using vehicle-to-vehicle (V2V) communications by forming a vehicular ad hoc networks (VANETs), with roadside units using vehicle-to-roadside (V2R) communications. IoV offers several benefits such as road safety, traffic efficiency, and infotainment by forwarding up-to-date traffic information about upcoming traffic. For instance, IoV is regarded as a technology that could help reduce the number of deaths caused by road accidents, and reduce fuel costs and travel time on the road. Vehicles could rapidly learn about the road condition and promptly respond and notify drivers for making informed decisions. However, malicious users in IoV may mislead the whole communications and create chaos on the road. Data falsification attack is one of the main security issues in IoV where vehicles rely on information received from other peers/vehicles. In this paper, we present data falsification attack detection using hashes for enhancing network security and performance by adapting contention window size to forward accurate information to the neighboring vehicles in a timely manner (to improve throughput while reducing end-to-end delay). We also present clustering approach to reduce travel time in case of traffic congestion. Performance of the proposed approach is evaluated using numerical results obtained from simulations. We found that the proposed adaptive approach prevents IoV from data falsification attacks and provides higher throughput with lower delay

    Developing and Simulating a Communication Plan for Mitigation of Secondary Crashes: Leveraging Connected Vehicle Technologies

    Get PDF
    The Federal Highway Administration (FHWA) has identified secondary crashes (SCs) on United States (US) highways as one of the core transportation issues that needs to be addressed. These crashes contribute to increased property damage, injuries, and fatalities and a decline in traffic flow conditions on freeways and adjacent arterials. The purpose of this study was to 1) propose a communication plan that leverages connected vehicle (CV) technologies to increase awareness to road users to target the mitigation of SCs, and 2) to evaluate the potential benefits of the proposed communication plan with CV technologies in alleviating SCs. This study used VISSIM microscopic software to model a freeway road segment on Florida’s Turnpike system and Lyons Road, a parallel arterial. The software was used to replicate the proposed communication plan and CV applications to issue advisories, such as speed, lane-change, or detour advisory to drivers during an incident. A safety evaluation was performed using the Surrogate Safety Assessment Model (SSAM) software by importing trajectory files from VISSIM to analyze generated traffic conflicts. The change in the number of simulated conflicts was used to evaluate the mitigation of SCs. The results showed significant safety benefits using the proposed communication plan with CV technologies. A conflict reduction of up to 98% was observed with full penetration of CVs at low traffic volume. Statistical analysis indicated that different penetration rates of CVs were required to achieve significant safety benefits depending on the analyzed scenario, i.e., traffic volume, number of lanes closed, side of the road the lane is closed, and dissemination of detour advisory
    corecore