88,936 research outputs found

    Measurement of Road Traffic Parameters Based on Multi-Vehicle Tracking

    Full text link
    Development of computing power and cheap video cameras enabled today's traffic management systems to include more cameras and computer vision applications for transportation system monitoring and control. Combined with image processing algorithms cameras are used as sensors to measure road traffic parameters like flow volume, origin-destination matrices, classify vehicles, etc. In this paper we propose a system for measurement of road traffic parameters (basic motion model parameters and macro-scopic traffic parameters). The system is based on Local Binary Pattern (LBP) image features classification with a cascade of Gentle Adaboost (GAB) classifiers to determine vehicle existence and its location in an image. Additionally, vehicle tracking and counting in a road traffic video is performed by using Extended Kalman Filter (EKF) and virtual markers. The newly proposed system is compared with a system based on background subtraction. Comparison is performed by the means of execution time and accuracy.Comment: Part of the Proceedings of the Croatian Computer Vision Workshop, CCVW 2015, Year

    画像処理形車両感知システム

    Get PDF
    The measurement of moving state of individual vehicle is necessary to grasp automobile traffic flow. Recently the image-processing type vehicle detector system has been noticed as a new sensor. However, as it is very difficult in real time processing and moreover it has particular technical problem for image-processing at outdoor environment, it has not been sufficiently utilized. In this paper, we propose a vehicle detecting method using wave form analysis on space frequency domain which signal is a brightness distribution from TV monitor. The features of our method are simple system construction because detection is achieved using finite frequency components and its Spectrum ratio. At the end of this paper, the certitude and robustness of this method has been verified with recognition experiments

    An Intelligent Monitoring System of Vehicles on Highway Traffic

    Full text link
    Vehicle speed monitoring and management of highways is the critical problem of the road in this modern age of growing technology and population. A poor management results in frequent traffic jam, traffic rules violation and fatal road accidents. Using traditional techniques of RADAR, LIDAR and LASAR to address this problem is time-consuming, expensive and tedious. This paper presents an efficient framework to produce a simple, cost efficient and intelligent system for vehicle speed monitoring. The proposed method uses an HD (High Definition) camera mounted on the road side either on a pole or on a traffic signal for recording video frames. On the basis of these frames, a vehicle can be tracked by using radius growing method, and its speed can be calculated by calculating vehicle mask and its displacement in consecutive frames. The method uses pattern recognition, digital image processing and mathematical techniques for vehicle detection, tracking and speed calculation. The validity of the proposed model is proved by testing it on different highways.Comment: 5 page

    A Comparison of Mobile Scanning to a Total Station Survey at the I-35 and IA 92 Interchange in Warren County, Iowa, August 15, 2012

    Get PDF
    The purpose of this project was to investigate the potential for collecting and using data from mobile terrestrial laser scanning (MTLS) technology that would reduce the need for traditional survey methods for the development of highway improvement projects at the Iowa Department of Transportation (Iowa DOT). The primary interest in investigating mobile scanning technology is to minimize the exposure of field surveyors to dangerous high volume traffic situations. Issues investigated were cost, timeframe, accuracy, contracting specifications, data capture extents, data extraction capabilities and data storage issues associated with mobile scanning. The project area selected for evaluation was the I-35/IA 92 interchange in Warren County, Iowa. This project covers approximately one mile of I-35, one mile of IA 92, 4 interchange ramps, and bridges within these limits. Delivered LAS and image files for this project totaled almost 31GB. There is nearly a 6-fold increase in the size of the scan data after post-processing. Camera data, when enabled, produced approximately 900MB of imagery data per mile using a 2- camera, 5 megapixel system. A comparison was done between 1823 points on the pavement that were surveyed by Iowa DOT staff using a total station and the same points generated through the MTLS process. The data acquired through the MTLS and data processing met the Iowa DOT specifications for engineering survey. A list of benefits and challenges is included in the detailed report. With the success of this project, it is anticipate[d] that additional projects will be scanned for the Iowa DOT for use in the development of highway improvement projects

    River Run Off Measurement With SAR Along Track Interferometry

    Get PDF
    The paper summarizes the need for global space borne river run-off measurements. It reports about an airborne SAR experiment aimed to measure the surface velocity of the river Isar in Bavaria / Germany. The results from two different SAR techniques, including Along Track Interferometry (ATI) show good correspondence. Finally suggestions for further studies are given

    GNFC: Towards Network Function Cloudification

    Get PDF
    An increasing demand is seen from enterprises to host and dynamically manage middlebox services in public clouds in order to leverage the same benefits that network functions provide in traditional, in-house deployments. However, today's public clouds provide only a limited view and programmability for tenants that challenges flexible deployment of transparent, software-defined network functions. Moreover, current virtual network functions can't take full advantage of a virtualized cloud environment, limiting scalability and fault tolerance. In this paper we review and evaluate the current infrastructural limitations imposed by public cloud providers and present the design and implementation of GNFC, a cloud-based Network Function Virtualization (NFV) framework that gives tenants the ability to transparently attach stateless, container-based network functions to their services hosted in public clouds. We evaluate the proposed system over three public cloud providers (Amazon EC2, Microsoft Azure and Google Compute Engine) and show the effects on end-to-end latency and throughput using various instance types for NFV hosts
    corecore