6,698 research outputs found

    QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding Tree Cohorts

    Full text link
    Large inter-datacenter transfers are crucial for cloud service efficiency and are increasingly used by organizations that have dedicated wide area networks between datacenters. A recent work uses multicast forwarding trees to reduce the bandwidth needs and improve completion times of point-to-multipoint transfers. Using a single forwarding tree per transfer, however, leads to poor performance because the slowest receiver dictates the completion time for all receivers. Using multiple forwarding trees per transfer alleviates this concern--the average receiver could finish early; however, if done naively, bandwidth usage would also increase and it is apriori unclear how best to partition receivers, how to construct the multiple trees and how to determine the rate and schedule of flows on these trees. This paper presents QuickCast, a first solution to these problems. Using simulations on real-world network topologies, we see that QuickCast can speed up the average receiver's completion time by as much as 10Ă—10\times while only using 1.04Ă—1.04\times more bandwidth; further, the completion time for all receivers also improves by as much as 1.6Ă—1.6\times faster at high loads.Comment: [Extended Version] Accepted for presentation in IEEE INFOCOM 2018, Honolulu, H

    cISP: A Speed-of-Light Internet Service Provider

    Full text link
    Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of cost-effective wide-area networks that move data over paths very close to great-circle paths, at speeds very close to the speed of light in vacuum. Our cISP design augments the Internet's fiber with free-space wireless connectivity. cISP addresses the fundamental challenge of simultaneously providing low latency and scalable bandwidth, while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the contiguous United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, we estimate that the economic value from such networks would substantially exceed their expense

    Torii: Multipath Distributed Ethernet Fabric Protocol for Data Centers with Zero-Loss Path Repair

    Get PDF
    This paper describes and evaluates Torii, a layer-two data center network fabric protocol. The main features of Torii are being fully distributed, scalable, fault-tolerant and with automatic setup. Torii is based on multiple, tree-based, topological MAC addresses that are used for table-free forwarding over multiple equal-cost paths, and it is capable of rerouting frames around failed links on the fly without needing a central fabric manager for any function. To the best of our knowledge, it is the first protocol that does not require the exchange of periodic messages to work under normal conditions and to recover from link failures, as Torii exchanges messages just once. Moreover, another important characteristic of Torii is that it is compatible with a wide range of data center topologies. Simulation results show an excellent distribution of traffic load and latencies, similar to shortest path protocols

    Torii: Multipath Distributed Ethernet Fabric Protocol for Data Centers with Zero-Loss Path Repair

    Get PDF
    This paper describes and evaluates Torii, a layer-two data center network fabric protocol. The main features of Torii are being fully distributed, scalable, fault-tolerant and with automatic setup. Torii is based on multiple, tree-based, topological MAC addresses that are used for table-free forwarding over multiple equal-cost paths, and it is capable of rerouting frames around failed links on the fly without needing a central fabric manager for any function. To the best of our knowledge, it is the first protocol that does not require the exchange of periodic messages to work under normal conditions and to recover from link failures, as Torii exchanges messages just once. Moreover, another important characteristic of Torii is that it is compatible with a wide range of data center topologies. Simulation results show an excellent distribution of traffic load and latencies, similar to shortest path protocols

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • …
    corecore