886 research outputs found

    Probabilistic Modelling for Unsupervised Analysis of Human Behaviour in Smart Cities

    Get PDF
    The growth of urban areas in recent years has motivated a large amount of new sensor applications in smart cities. At the centre of many new applications stands the goal of gaining insights into human activity. Scalable monitoring of urban environments can facilitate better informed city planning, efficient security, regular transport and commerce. A large part of monitoring capabilities have already been deployed; however, most rely on expensive motion imagery and privacy invading video cameras. It is possible to use a low-cost sensor alternative, which enables deep understanding of population behaviour such as the Global Positioning System (GPS) data. However, the automated analysis of such low dimensional sensor data, requires new flexible and structured techniques that can describe the generative distribution and time dynamics of the observation data, while accounting for external contextual influences such as time of day or the difference between weekend/weekday trends. In this paper, we propose a novel time series analysis technique that allows for multiple different transition matrices depending on the data’s contextual realisations all following shared adaptive observational models that govern the global distribution of the data given a latent sequence. The proposed approach, which we name Adaptive Input Hidden Markov model (AI-HMM) is tested on two datasets from different sensor types: GPS trajectories of taxis and derived vehicle counts in populated areas. We demonstrate that our model can group different categories of behavioural trends and identify time specific anomalies

    Adaptive Airborne Separation to Enable UAM Autonomy in Mixed Airspace

    Get PDF
    The excitement and promise generated by Urban Air Mobility (UAM) concepts have inspired both new entrants and large aerospace companies throughout the world to invest hundreds of millions in research and development of air vehicles, both piloted and unpiloted, to fulfill these dreams. The management and separation of all these new aircraft have received much less attention, however, and even though NASAs lead is advancing some promising concepts for Unmanned Aircraft Systems (UAS) Traffic Management (UTM), most operations today are limited to line of sight with the vehicle, airspace reservation and geofencing of individual flights. Various schemes have been proposed to control this new traffic, some modeled after conventional air traffic control and some proposing fully automatic management, either from a ground-based entity or carried out on board among the vehicles themselves. Previous work has examined vehicle-based traffic management in the very low altitude airspace within a metroplex called UTM airspace in which piloted traffic is rare. A management scheme was proposed in that work that takes advantage of the homogeneous nature of the traffic operating in UTM airspace. This paper expands that concept to include a traffic management plan usable at all altitudes desired for electric Vertical Takeoff and Landing urban and short-distance, inter-city transportation. The interactions with piloted aircraft operating under both visual and instrument flight rules are analyzed, and the role of Air Traffic Control services in the postulated mixed traffic environment is covered. Separation values that adapt to each type of traffic encounter are proposed, and the relationship between required airborne surveillance range and closure speed is given. Finally, realistic scenarios are presented illustrating how this concept can reliably handle the density and traffic mix that fully implemented and successful UAM operations would entail

    Feasibility of expanding traffic monitoring systems with floating car data technology

    Get PDF
    Trajectory information reported by certain vehicles (Floating Car Data or FCD) can be applied to monitor the road network. Policy makers face difficulties when deciding to invest in the expansion of their infrastructure based on inductive loops and cameras, or to invest in a FCD system. This paper targets this decision. The provided FCD functionality is investigated, minimum requirements are determined and reliability issues are researched. The communication cost is derived and combined with other elements to assess the total costs for different scenarios. The outcome is to target a penetration rate of 1%, a sample interval of 10 seconds and a transmission interval of 30 seconds. Such a deployment can accurately determine the locations of incidents and traffic jams. It can also estimate travel times accurately for highways, for urban roads this is limited to a binary categorization into normal or congested traffic. No reliability issues are expected. The most cost efficient scenario when deploying a new FCD system is to launch a smartphone application. For Belgium, this costs 13 million EUR for 10 years. However, it is estimated that purchasing data from companies already acquiring FCD data through their own product could reduce costs with a factor 10

    Developing travel time estimation methods using sparse GPS data

    Get PDF
    Existing methods of estimating travel time from GPS data are not able to simultaneously take account of the issues related to uncertainties associated with GPS and spatial road network data. Moreover, they typically depend upon high frequency data sources from specialist data providers which can be expensive and are not always readily available. The study reported here therefore sought to better estimate travel time using ‘readily available’ vehicle trajectory data from moving sensors such as buses, taxis and logistical vehicles equipped with GPS in ‘near’ real-time. To do this, accurate locations of vehicles on a link were first map-matched to reduce the positioning errors associated with GPS and digital road maps. Two mathematical methods were then developed to estimate link travel times from map-matched GPS fixes, vehicle speeds and network connectivity information with a special focus on sampling frequencies, vehicle penetration rates and time window lengths. GPS data from Interstate I-880 (California, USA) for a total of 73 vehicles over 6 hours were obtained from the UC-2 Berkeley’s Mobile Century Project, and these were used to evaluate several travel time estimation methods, the results of which were then validated against reference travel time data collected from high resolution video cameras. The results indicate that vehicle penetration rates, data sampling frequencies, vehicle coverage on the links and time window lengths all influence the accuracy of link travel time estimation. The performance was found to be best in the 5 minute time window length and for a GPS sampling frequency of 60 seconds

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data

    Full text link
    Accurately modeling traffic speeds is a fundamental part of efficient intelligent transportation systems. Nowadays, with the widespread deployment of GPS-enabled devices, it has become possible to crowdsource the collection of speed information to road users (e.g. through mobile applications or dedicated in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced speed data also brings very important challenges, such as the highly variable measurement noise in the data due to a variety of driving behaviors and sample sizes. When not properly accounted for, this noise can severely compromise any application that relies on accurate traffic data. In this article, we propose the use of heteroscedastic Gaussian processes (HGP) to model the time-varying uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a HGP conditioned on sample size and traffic regime (SRC-HGP), which makes use of sample size information (probe vehicles per minute) as well as previous observed speeds, in order to more accurately model the uncertainty in observed speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we empirically show that the proposed heteroscedastic models produce significantly better predictive distributions when compared to current state-of-the-art methods for both speed imputation and short-term forecasting tasks.Comment: 22 pages, Transportation Research Part C: Emerging Technologies (Elsevier
    • …
    corecore