39,234 research outputs found

    Self-Learning Classifier for Internet traffic

    Get PDF
    Network visibility is a critical part of traffic engineering, network management, and security. Recently, unsupervised algorithms have been envisioned as a viable alternative to automatically identify classes of traffic. However, the accuracy achieved so far does not allow to use them for traffic classification in practical scenario. In this paper, we propose SeLeCT, a Self-Learning Classifier for Internet traffic. It uses unsupervised algorithms along with an adaptive learning approach to automatically let classes of traffic emerge, being identified and (easily) labeled. SeLeCT automatically groups flows into pure (or homogeneous) clusters using alternating simple clustering and filtering phases to remove outliers. SeLeCT uses an adaptive learning approach to boost its ability to spot new protocols and applications. Finally, SeLeCT also simplifies label assignment (which is still based on some manual intervention) so that proper class labels can be easily discovered. We evaluate the performance of SeLeCT using traffic traces collected in different years from various ISPs located in 3 different continents. Our experiments show that SeLeCT achieves overall accuracy close to 98%. Unlike state-of-art classifiers, the biggest advantage of SeLeCT is its ability to help discovering new protocols and applications in an almost automated fashio

    Clustering network traffic utilization

    Get PDF
    Classification of network traffic using distinctive characteristic application is not ideal for P2P and HTTP protocols. This is for the case when a user intercepts the application from other proxy or dynamic port, then the bytes utilization can be manipulated. In this paper, we present a clustering approach for network traffic classification using information from one particular port. The clustering experiments were conducted using three different clustering algorithms, which are K-Means, DBScan and AutoClass. The analysis discussed on the quality of resulting clusters from all the algorithms

    Study of Tree Base Data Mining Algorithms for Network Intrusion Detection

    Get PDF
    Internet growth has increased rapidly due to which number of network attacks have been increased. This emphasis importance of network intrusion detection systems (IDS) for securing the network. It is the process of monitoring and analyzing network traffic for detecting security violations many researcher suggested data mining technique such as classification, clustering ,pattern matching and rule induction for developing an effective intrusion detection system. In order to detect the intrusion, the network traffic can be classified into normal and anomalous. In this paper we have evaluated tree base classification algorithms namely J48, Hoeffding tree, Random Forest, Random Tree, REPTree. The comparison of these tree based classification algorithms is presented in this paper based upon their performance metrics using 10 fold cross validation and KDD- CUP test dataset. This study shows that random forest and J48 are the best suitable tree base algorithms

    MULTI-DIMENSIONAL PROFILING OF CYBER THREATS FOR LARGE-SCALE NETWORKS

    Get PDF
    Current multi-domain command and control computer networks require significant oversight to ensure acceptable levels of security. Firewalls are the proactive security management tool at the network’s edge to determine malicious and benign traffic classes. This work aims to develop machine learning algorithms through deep learning and semi-supervised clustering, to enable the profiling of potential threats through network traffic analysis within large-scale networks. This research accomplishes these objectives by analyzing enterprise network data at the packet level using deep learning to classify traffic patterns. In addition, this work examines the efficacy of several machine learning model types and multiple imbalanced data handling techniques. This work also incorporates packet streams for identifying and classifying user behaviors. Tests of the packet classification models demonstrated that deep learning is sensitive to malicious traffic but underperforms in identifying allowed traffic compared to traditional algorithms. However, imbalanced data handling techniques provide performance benefits to some deep learning models. Conversely, semi-supervised clustering accurately identified and classified multiple user behaviors. These models provide an automated tool to learn and predict future traffic patterns. Applying these techniques within large-scale networks detect abnormalities faster and gives network operators greater awareness of user traffic.Outstanding ThesisCaptain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Mining Unclassified Traffic Using Automatic Clustering Techniques

    Get PDF
    In this paper we present a fully unsupervised algorithm to identify classes of traffic inside an aggregate. The algorithm leverages on the K-means clustering algorithm, augmented with a mechanism to automatically determine the number of traffic clusters. The signatures used for clustering are statistical representations of the application layer protocols. The proposed technique is extensively tested considering UDP traffic traces collected from operative networks. Performance tests show that it can clusterize the traffic in few tens of pure clusters, achieving an accuracy above 95%. Results are promising and suggest that the proposed approach might effectively be used for automatic traffic monitoring, e.g., to identify the birth of new applications and protocols, or the presence of anomalous or unexpected traffi

    Role based behavior analysis

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2009Nos nossos dias, o sucesso de uma empresa depende da sua agilidade e capacidade de se adaptar a condições que se alteram rapidamente. Dois requisitos para esse sucesso são trabalhadores proactivos e uma infra-estrutura ágil de Tecnologias de Informacão/Sistemas de Informação (TI/SI) que os consiga suportar. No entanto, isto nem sempre sucede. Os requisitos dos utilizadores ao nível da rede podem nao ser completamente conhecidos, o que causa atrasos nas mudanças de local e reorganizações. Além disso, se não houver um conhecimento preciso dos requisitos, a infraestrutura de TI/SI poderá ser utilizada de forma ineficiente, com excessos em algumas áreas e deficiências noutras. Finalmente, incentivar a proactividade não implica acesso completo e sem restrições, uma vez que pode deixar os sistemas vulneráveis a ameaças externas e internas. O objectivo do trabalho descrito nesta tese é desenvolver um sistema que consiga caracterizar o comportamento dos utilizadores do ponto de vista da rede. Propomos uma arquitectura de sistema modular para extrair informação de fluxos de rede etiquetados. O processo é iniciado com a criação de perfis de utilizador a partir da sua informação de fluxos de rede. Depois, perfis com características semelhantes são agrupados automaticamente, originando perfis de grupo. Finalmente, os perfis individuais são comprados com os perfis de grupo, e os que diferem significativamente são marcados como anomalias para análise detalhada posterior. Considerando esta arquitectura, propomos um modelo para descrever o comportamento de rede dos utilizadores e dos grupos. Propomos ainda métodos de visualização que permitem inspeccionar rapidamente toda a informação contida no modelo. O sistema e modelo foram avaliados utilizando um conjunto de dados reais obtidos de um operador de telecomunicações. Os resultados confirmam que os grupos projectam com precisão comportamento semelhante. Além disso, as anomalias foram as esperadas, considerando a população subjacente. Com a informação que este sistema consegue extrair dos dados em bruto, as necessidades de rede dos utilizadores podem sem supridas mais eficazmente, os utilizadores suspeitos são assinalados para posterior análise, conferindo uma vantagem competitiva a qualquer empresa que use este sistema.In our days, the success of a corporation hinges on its agility and ability to adapt to fast changing conditions. Proactive workers and an agile IT/IS infrastructure that can support them is a requirement for this success. Unfortunately, this is not always the case. The user’s network requirements may not be fully understood, which slows down relocation and reorganization. Also, if there is no grasp on the real requirements, the IT/IS infrastructure may not be efficiently used, with waste in some areas and deficiencies in others. Finally, enabling proactivity does not mean full unrestricted access, since this may leave the systems vulnerable to outsider and insider threats. The purpose of the work described on this thesis is to develop a system that can characterize user network behavior. We propose a modular system architecture to extract information from tagged network flows. The system process begins by creating user profiles from their network flows’ information. Then, similar profiles are automatically grouped into clusters, creating role profiles. Finally, the individual profiles are compared against the roles, and the ones that differ significantly are flagged as anomalies for further inspection. Considering this architecture, we propose a model to describe user and role network behavior. We also propose visualization methods to quickly inspect all the information contained in the model. The system and model were evaluated using a real dataset from a large telecommunications operator. The results confirm that the roles accurately map similar behavior. The anomaly results were also expected, considering the underlying population. With the knowledge that the system can extract from the raw data, the users network needs can be better fulfilled, the anomalous users flagged for inspection, giving an edge in agility for any company that uses it

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions
    corecore