29,298 research outputs found

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    DeepTransport: Learning Spatial-Temporal Dependency for Traffic Condition Forecasting

    Full text link
    Predicting traffic conditions has been recently explored as a way to relieve traffic congestion. Several pioneering approaches have been proposed based on traffic observations of the target location as well as its adjacent regions, but they obtain somewhat limited accuracy due to lack of mining road topology. To address the effect attenuation problem, we propose to take account of the traffic of surrounding locations(wider than adjacent range). We propose an end-to-end framework called DeepTransport, in which Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are utilized to obtain spatial-temporal traffic information within a transport network topology. In addition, attention mechanism is introduced to align spatial and temporal information. Moreover, we constructed and released a real-world large traffic condition dataset with 5-minute resolution. Our experiments on this dataset demonstrate our method captures the complex relationship in temporal and spatial domain. It significantly outperforms traditional statistical methods and a state-of-the-art deep learning method

    Egocentric Vision-based Future Vehicle Localization for Intelligent Driving Assistance Systems

    Full text link
    Predicting the future location of vehicles is essential for safety-critical applications such as advanced driver assistance systems (ADAS) and autonomous driving. This paper introduces a novel approach to simultaneously predict both the location and scale of target vehicles in the first-person (egocentric) view of an ego-vehicle. We present a multi-stream recurrent neural network (RNN) encoder-decoder model that separately captures both object location and scale and pixel-level observations for future vehicle localization. We show that incorporating dense optical flow improves prediction results significantly since it captures information about motion as well as appearance change. We also find that explicitly modeling future motion of the ego-vehicle improves the prediction accuracy, which could be especially beneficial in intelligent and automated vehicles that have motion planning capability. To evaluate the performance of our approach, we present a new dataset of first-person videos collected from a variety of scenarios at road intersections, which are particularly challenging moments for prediction because vehicle trajectories are diverse and dynamic.Comment: To appear on ICRA 201

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization

    Get PDF
    Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to propose a new methodology for extracting spatio-temporal traffic patterns, ultimately for modeling large-scale traffic dynamics, and long-term traffic forecasting. We attack this issue by utilizing Locality-Preserving Non-negative Matrix Factorization (LPNMF) to derive low-dimensional representation of network-level traffic states. Clustering is performed on the compact LPNMF projections to unveil typical spatial patterns and temporal dynamics of network-level traffic states. We have tested the proposed method on simulated traffic data generated for a large-scale road network, and reported experimental results validate the ability of our approach for extracting meaningful large-scale space-time traffic patterns. Furthermore, the derived clustering results provide an intuitive understanding of spatial-temporal characteristics of traffic flows in the large-scale network, and a basis for potential long-term forecasting.Comment: IET Intelligent Transport Systems (2013

    Assessing spatiotemporal correlations from data for short-term traffic prediction using multi-task learning

    Get PDF
    Traffic flow prediction is a fundamental problem for efficient transportation control and management. However, most current data-driven traffic prediction work found in the literature have focused on predicting traffic from an individual task perspective, and have not fully leveraged the implicit knowledge present in a road-network through space and time correlations. Such correlations are now far easier to isolate due to the recent profusion of traffic data sources and more specifically their wide geographic spread. In this paper, we take a multi-task learning (MTL) approach whose fundamental aim is to improve the generalization performance by leveraging the domain-specific information contained in related tasks that are jointly learned. In addition, another common factor found in the literature is that a historical dataset is used for the calibration and the assessment of the proposed approach, without dealing in any explicit or implicit way with the frequent challenges found in real-time prediction. In contrast, we adopt a different approach which faces this problem from a point of view of streams of data, and thus the learning procedure is undertaken online, giving greater importance to the most recent data, making data-driven decisions online, and undoing decisions which are no longer optimal. In the experiments presented we achieve a more compact and consistent knowledge in the form of rules automatically extracted from data, while maintaining or even improving, in some cases, the performance over single-task learning (STL).Peer ReviewedPostprint (published version
    • …
    corecore